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Abstract
Energy harvesting techniques become increasingly popular as pow-
er supplies for embedded systems. However, the harvested energy
is intrinsically unstable. Thus, the program execution may be inter-
rupted frequently. Although the development of non-volatile pro-
cessors (NVP) can save and restore execution states, both hardware
and software challenges exist for energy harvesting powered em-
bedded systems. On the hardware side, existing power detector only
signals the “poor” quality of the harvested power based on a preset
threshold voltage. The inappropriate setting of this threshold will
make the NVP based embedded system suffer from either unneces-
sary checkpointing or checkpointing failures. On the software side,
not all tasks can be checkpointed. Once the power is off, these tasks
will have to restart from the beginning. In this paper, a task sched-
uler is proposed to maximize task progress by prioritizing tasks
which cannot be checkpointed when power is weak so that they
can finish before the power outage. To assist task scheduling, three
additional modules including voltage monitor, checkpointing han-
dler, and routine handler, are proposed. Experimental results show
increased overall task progress and reduced energy consumption.

CCS Concepts •Computer systems organization → Embed-
ded software

Keywords Energy Harvesting, Task Scheduling, Progress Maxi-
mization, Non-volatile Memory, Non-volatile Processor

1. Introduction
Embedded systems tend to be smarter, smaller and more reliable
in this era of Internet of Things (IoT) where all “things” are em-
bedded with electronics, software, sensors, and connectivity in our
daily life. These embedded “things” interleave and communicate
with each other resulting in improved social and economic benefits
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and overall human well-being. Typical applications of IoT devices
include power grids, structural health, automotive, logistic, health-
care, etc. There are about 9 billion IoT devices today and the num-
ber keeps growing. It is estimated that the IoT will consist of almost
50 billion objects by 2020 [1].

While the vision is promising and exciting, there are several
challenges in achieving this goal. One of the challenges is how to
power these 50 billion embedded devices. While battery power is
not a favorable solution in a long run due to size, longevity, safety,
and recharging concerns, energy harvesting, out of all possible
energy sources, is one of the most promising techniques to meet
both the size and power requirements of embedded devices.

Energy harvesting devices harvest energy from their surround-
ing energy sources which include kinetic, electromagnetic radiation
(including light and RF), thermal energy, etc. and then convert it in-
to electric energy. The harvested energy can be used to recharge a
capacitor or, in some cases, to directly power the electronics. How-
ever, there is an intrinsic drawback with harvested energy. They are
mostly weak and unstable. With an unstable power supply, the pro-
cessor execution will be interrupted frequently. Frequent turning-
off and booting-up add an extra burden on the limited energy bud-
get. Even worse, in some cases, large tasks can never get finished
since the intermediate results cannot be saved. However, thanks to
the non-volatile processors (NVP) [8, 19, 23], which enables in-
stant on/off for these devices. NVP systems are equipped with a
piece of non-volatile memory (NVM) such as FRAM [16, 23]. Ev-
ery time there is a power outage, the processor’s states will be saved
from volatile memory into the NVM, which is known as check-
pointing. Then the next time when input power becomes abundan-
t, the processor’s state can be restored and program execution re-
sumes. In this way, we can make sure the program execution is
“accumulative” and resilient to frequent power outages.

Nevertheless, both hardware and software challenges exist. On
the hardware side, the power regulator of NVP systems is only able
to warn NVP system about the “poor” quality of the harvesting
power by signaling interrupts. However, the warning is based on
a preset voltage threshold. Inappropriate settings of this threshold
will degrade the performance of NVP system. On one hand, if
the threshold is too high, the NVP system will waste energy with
frequent checkpointing. On the other hand, if the threshold is too
low, the checkpointing may fail. Therefore, it is necessary for
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NVP system to proactively initiate voltage detection which requires
software coordination.

On the software side, all unfinished tasks should be checkpoint-
ed before a power outage. However, not all tasks can be checkpoint-
ed. We define tasks that cannot be checkpointed as Un CK tasks
and tasks that can be checkpointed as CK tasks. Un CK tasks, such
as communication, are susceptible to delay. A long time suspension
may result in errors and the communication session needs to be
restarted. Others, such as sensing, are unnecessary for checkpoint-
ing because incompletely sensed data might be useless. As Un CK
tasks will lose their progress after a power outage, we need a sched-
uler to prioritize Un CK tasks to complete them before a power
outage. In this way, task execution progress can be maximized. To
assist task scheduling, additional three modules including voltage
monitor, checkpointing handler, and routine handler are proposed
to further maximize task progress. The proposed techniques can
be easily incorporated into existing embedded system software to
provide execution support under energy harvesting.

In a nutshell, the major contributions of this work include:

• A task scheduler is proposed to maximize overall task progress
by incorporating the results of voltage monitor;
• A proactive voltage monitor is proposed to detect power inter-

ruptions and analyze the harvesting power with minimum hard-
ware supports;
• An on-demand checkpoint handler is proposed to conduc-

t checkpointing with energy efficiency and reliability;
• A routine handler is proposed which triggers sleep/wake-up

events of energy harvesting systems to realize fast resuming.

The rest of this paper is organized as follows. Section 2 dis-
cusses related works. Section 3 introduces the system architecture
and background. Section 4 provides motivational example of this
work. Section 5 proposes NVP scheduler. Section 6 conducts the
experiments. Finally, Section 7 concludes this paper.

2. Related Works
Energy harvesting extracts power from the ambient environment
and is often used to deploy long lifetime battery-less devices. So-
lar, wind, footsteps, breathing, blood pressure, and body heat [6, 11,
14] are all promising energy harvesting sources. They have differ-
ent characteristics of predictability, controllability, and magnitude.
For example, solar energy is predictable and can generate a large
magnitude of power at a power density of 15mW/cm2. The foot-
step is a controllable human power and the amount of harvested
power can be as much as 67W [5] during a brisk walk. For ultra-
low power devices, the sources with low power densities, such as
breathing (0.42W ), and body heat (2.4∼4.8W ), are able to provide
sufficient power to drive the devices at low duty cycles [15]. With
proper configuration and management [4], it is feasible to operate
a whole system with purely harvested energy.

In order to make systems power-failure proof, non-volatile
memory based processors (NVP) are developed. In these proces-
sors, non-volatile memory [9, 10] is attached to the processor, and
the volatile execution state is checkpointed into the non-volatile
memory upon the power outage. Researchers showed that check-
pointing is a feasible method to save the runtime state [12, 13]
with nonvolatile memory for energy-harvesting devices. Microcon-
trollers such as TI’s MSP430 series [2] employ FRAM as on-chip
memory. Ransford et al. [13] present a software system, mementos,
for transiently powered RFID-scale devices with energy-aware s-
tate checkpointing method. This system deploys Flash memory to
back up the volatile content. Registers are pushed into the stack
and then saved to the Flash memory. Since Flash memory has a

limited write endurance and slow write speed, the time and energy
overhead is large. Similarly, Wireless Identification and Sensing
Platform (WISP) [3] was developed to achieve the similar goal.

Instead of checkpointing the execution state into on-chip or
off-chip memory at a low speed, ferroelectric non-volatile register
based processors are proposed for energy-harvesting devices [16,
23]. This kind of processor attaches a nonvolatile memory cel-
l to each volatile element and therefore allows fast local back-
up of intermediate results and fast recovery. FRAM-based proces-
sors [8, 19, 23], present a great potential to be deployed in energy-
harvesting devices. For example, Yu et al. [20] propose a non-
volatile processor architecture which integrates non-volatile ele-
ments into volatile memory at bit granularity. To reduce the back-
up overhead and energy, different technologies have been proposed
including instruction scheduling [18], register reduction [22], and
instruction selection [17].

Since harvested energy is limited for each power cycle, effi-
ciently utilizing harvested energy is critical. Smart task scheduling
techniques can save a significant amount of energy. [21] proposes
a long-term deadline-aware scheduling algorithm to reduce ener-
gy consumption and deadline miss rates of tasks. [7] proposes a
performance-aware task scheduling strategy for energy harvesting
nonvolatile processors considering the power switching overhead.
This paper will propose a lightweight scheduler which can maxi-
mize task progress and thus reduce energy consumption consider-
ing all types of tasks.

3. Architecture and Background
3.1 System Architecture

Figure 1. System Architecture
As shown in Figure 1, the architecture of the targeted ener-

gy harvesting system includes both hardware and software com-
ponents from bottom to top. The power supply consists of energy
harvesters, a regulator, and a capacitor, which supplies energy for
the whole system. The energy harvester converts harvested energy
from ambient sources, such as solar energy, thermal energy, piezo-
electric, and radio frequency (RF) to electrical energy. The con-
verted electrical energy is stored in a small-size storage capacitor,
which is used to supply energy for checkpointing upon power out-
ages. The regulator is used to maintain a constant voltage level. The
other hardware components consist of MCU, timer, ADC, sensors,
and I/O ports. The software layer has full control of the onboard
hardware to collect data and make decisions.

The software layer includes the proposed progress maximiza-
tion scheduler assisted with three extra functional modules: volt-
age monitor, checkpoint handler, and routine handler. These four
functional modules interact with each other to maximize the task
execution progress and can be easily incorporated into any exist-
ing energy harvesting embedded systems. Further, all tasks to be
scheduled can be divided into CK tasks and Un CK tasks.
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3.2 Software Based CPU Checkpointing

Figure 2. TI MSP430FRAM

Non-volatile processor, such as TI’s MSP430 FRAM MCU
shown in Figure 2, has both volatile and no-volatile on-chip mem-
ory. When a power outage occurs, all contents of the processor reg-
isters and SRAM should be checkpointed to FRAM. Hence, all the
computation states can be saved. Once the power comes back on
again, the computation can resume with the saved states.

Since there is no hardware to automatically save computation
states, the software should take this responsibility. When detecting
a low voltage below the preset threshold, the system will enter
checkpoint stage. First, all registers will be pushed onto the stack.
Then the whole stack, which includes contents of all registers and
all temporary variables, will be checkpointed from SRAM to non-
volatile memory. One challenge here is how to save the program
counter (PC) since we are not allowed to move PC explicitly. The
trick we used is that, whenever a callee is called or interrupt service
routine is invoked, the PC will be automatically pushed onto the
stack. Then, we can safely save the PC together with other registers
to the non-volatile FRAM.

4. Motivational Examples
In this section, examples are given which show the motivation of
this work.

The system we use in this example is checkpointing enabled
and equipped with both volatile and non-volatile memories. As-
sume that successful checkpointing can be ensured. For illustration
purposes, we employ two tasks. Task A can be checkpointed and
task B cannot be checkpointed. Initially, tasks are executed con-
currently with a round-robin scheduler. Given a harvesting power
trace, the execution progress of both tasks are shown in Figure. 3.

Figure 3. Un CK Task B is Unfinished Before The Power Outage
Resulting in Progress Setback.

In Figure. 3, the red dash line represents the energy harvesting
power trace, the yellow shadow represents the execution progress

of task A, and the green bars represent the execution progress of
task B. From the beginning, the execution progresses of both tasks
are gradually accumulated until the harvesting power drops below
Pck. Since A can be checkpointed, its execution status including all
the register files and stack can be stored into non-volatile memory
when checkpointing is triggered. Therefore, once power comes
back on again the system wakes up and the program execution of
A resumes.

However, Since B is cannot be checkpointed, it loses entire
execution status during the power outage. Once power comes back
on again, B has to restart from the very beginning. As we can see,
before the power outage, B is almost finished and has the execution
progress of 80%, which is a significant setback once this progress
is completely lost during the power outage.

One simple and intuitive solution to avoid the progress setback
is to prioritize B once the imminent power outage is detected.
In this way, since A will not suffer from progress setback, if B
can finish before the power outage, the overall execution progress
can be maintained. Given the same power trace, figure. 4 shows
the execution progress of both A and B which is prioritized after
detecting the power drop.

Figure 4. Prioritizing Un CK Task B to Finish Before The Power
Outage Results in Progress Maximization.

From Figure. 4, we can see that after detecting the power drop,
B has been prioritized immediately and it finishes right before the
system conducts checkpointing. In this way, the execution progress
of both A and B can be maintained. What is even more appealing is
that, compared with Figure. 3, a significant amount of time and
energy are saved, which can be further used for other program
executions. Overall, the execution progress can be significantly
improved.

Although prioritizing B can maximize the overall execution
progress, before conducting the priority-based scheduling, it is
crucial to know whether B can finish before the power outage. This
is because, if B cannot finish, the system will waste even more
energy and have a severe progress setback during the power outage.
To answer whether task B can finish before the power outage, the
system needs several pieces of information. Here we conduct a
serial of backward reasoning in Figure. 5 to find out what these
pieces of information are and why the system needs to know them.

From Figure. 5, we can see that to answer whether B can finish
before the power outage, we need to know the remaining time both
for B to finish (tB) and for the system to operate (TS). If TS > tB ,
then prioritizing B could maximize the execution progress. In order
to calculate tB and TS , the system needs the following four pieces
of information.

1) The execution progress of task B (PgB);

2) The progress to time ratio of task B (Pg′B);

3) The time when power drop happens (Tdp);

4) The time when program execution stops (Tsp).
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Figure 5. Required Information to Evaluate Whether Task B Can
Finish Before The Power Outage.

Therefore, in Section. 5, aside from proposing a priority-based
scheduling algorithm, techniques are also designed to achieve and
maintain these four pieces of information for evaluating whether
Un CK tasks can be prioritized whenever power outages happen.

5. A lightweight NVP Scheduler
In this section, we will present a lightweight scheduler, which is
specifically designed for NVPs. The goal is to maximize system
progress under unstable power supply.

Figure 6. NVP Scheduler Overview
Figure 6 shows the overview. The core component is the NVP

scheduler and it is assisted with three functional modules: voltage
monitor, checkpoint handler, and routine handler. The NVP sched-
uler can run on its own or be incorporated into an existing embed-
ded OS. If working with existing OS, the modules in existing OS
remain intact and will be invoked when V < Vwarn, where Vwarn

is the preset voltage threshold. The voltage monitor is active all the
time and responsible for voltage detection and analysis of power
consumption of NVP system. Once voltage V drops below Vwarn,
NVP scheduler is triggered to maximize task progress. If V contin-
ues to drop until it is below threshold Vck, the checkpoint handler
is triggered to ensure a successful checkpointing. After checkpoint-
ing, the routine handler will put the system into sleep mode until
power recovers. By then, the routine handler will wake up the en-
tire system. These functional modules interact with each other. The
details of each component will be presented in Section 5.1, 5.2, 5.3,
and 5.4, respectively.

5.1 NVP Scheduler
In this section, the NVP scheduler is proposed to maximize the
overall task progress when the harvested power is insufficient to
support NVP systems. After the voltage monitor detects that the
voltage on the storage capacitor drops below Vwarn, in anxious
of a potential power outage, the NVP Scheduler is triggered to

maximize progress with the remaining energy supply. The key idea
of the scheduler is to differentiate different tasks and all tasks can
be categorized into two groups:

• Un CK tasks: tasks that cannot or do not need to be checkpoint-
ed which still have to start over when power comes back on
again. Typical examples include communication, sensing, etc.
• CK tasks: tasks that can be checkpointed and resumed without

causing any problem. Typical examples include computation,
data fusion, etc.

Several important pieces of information regarding each task also
need to be maintained. Of the most important are the task execution
power, current progress, progress to time ratio, and checkpointablil-
ity, as shown in Table 1.

Table 1. Task Information (Tab)
Tasks Execution Power Current Progress Progress to Time Ratio Checkpointablility

Tsk[i] Pi Pgi Pg′i True
Tsk[j] Pj Pgj Pg′j False

For each task, the execution power is measured at offline stage.
The execution progress and the progress to time ratio are main-
tained by the OS and are updated when the task is switched out by
the scheduler. When voltage on the storage capacitor drops below
Vwarn, in anxious of a potential power outage, NVP scheduler is
triggered to prioritize the Un CK tasks. Given the task ready queue
Q and the task information table Tab as the inputs, Algorithm 5.1
shows details of NVP scheduler.

Algorithm 5.1 NVP Scheduler
Input: Q and Tab
Output: schedule tasks for maximum task progress
1: while (Vck < Vcap < Vwarn) do
2: TS , T rustP ⇐ DPA(Tab, TADC); /*Algorithm 5.3*/
3: Trustmax = 0;
4: for each Un CK Tsk[i] in ready queue Q do
5: Trusti ⇐ TCE(TS , T rustP , T sk[Cur], T sk[i], Tab); /*

Algorithm 5.2 */
6: if Trusti > Trustmax; then
7: Trustmax = Trusti;
8: Sel = Tsk[i];
9: end if

10: end for
11: if Trustmax > TrustTH then
12: execute Sel
13: else
14: break;
15: end if
16: end while
17: while (Vck < Vcap < Vwarn) do
18: round-robin scheduling for CK tasks∈ Q;
19: end while

The purpose of NVP Scheduler is to achieve overall task
progress maximization by giving more scheduling priority to
Un CK tasks in the ready queue Q when potential power outage
may happen. The inputs include ready task queueQ and task infor-
mation table Tab. NVP Scheduler proceeds with a voltage range of
[Vck, Vwarn]. Once Vcap < Vwarn, in anxious of a possible power
outage, NVP Scheduler starts scheduling. When Vcap ≤ Vck, the
NVP Scheduler stops and checkpointing starts.

At first, NVP scheduler needs to prioritize the scheduling for
Un CK tasks, which is shown in line 1 to 16. Before conducting
scheduling, preparation needs to be made. In line 2, NVP scheduler
calls the Discharging Power Analysis (DPA) algorithm to assess
the harvesting power and output the estimated execution time TS
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that the system can support to the current ongoing task Tsk[cur],
along with which DPA also provides the trustiness value TrustP

of the estimation. DPA is detailed in Algorithm 5.3. After calling
DPA, in line 3, NVP scheduler initiates the parameter Trustmax

which will be further used to select the best Un CK task candidate
for scheduling.

After preparation stage, in line 4 to 10, NVP scheduler evaluates
the possibility of each task Tsk[i] to finish before the power out-
age. Given the parameter of TS and TrustP from DPA, the current
task Tsk[cur], targeting task Tsk[i], and the task information table
Tab, the Task Completion Evaluation (TCE) algorithm is called by
NVP scheduler to evaluate the possibility that Tsk[i] is able to fin-
ish before the power outage. This possibility for Tsk[i] is defined
as Trusti. Details of TCE is given in Algorithm 5.2. During the
calculation of Trusti for each Un CK task, NVP scheduler is able
to find the best Tsk[i] with the maximum Trusti, which will be
selected by NVP scheduler for further evaluation. The best Tsk[i]
and its Trusti are assigned to Sel and Trustmax respectively.

With Sel and Trustmax, in line 11 to 15, NVP scheduler
compare Trustmax with TrustTH which is a threshold to de-
cide whether it is worthwhile to execute Sel. If Trustmax >
TrustTH , NVP scheduler believes that Sel can finish before the
power outage and proceeds the scheduling for Sel. Otherwise, N-
VP scheduler will break out the while loop to schedule for Un CK
tasks. This is because, if the best Un CK candidate Sel is not
worthwhile for scheduling, no other Un CK tasks will be.

Finally, once there is no suitable Un CK candidates for schedul-
ing, NVP will conduct round-robin scheduling for CK tasks in the
task ready queue Q until Vcap drops below Vck, when the check-
pointing starts. This is shown in line 17 to 19

During the scheduling, NVP scheduler needs to call its sub-
algorithm TCE to conduct task completion evaluation for each
Un CK task. The evaluation is to find out the trustiness Trusti
of Tsk[i] to be able to finish before the power outage. Given a
targeting task Tsk[i], the current task Tsk[cur], task information
table Tab, and the calculated values of TS and TrustP from DPA,
Algorithm 5.2 shows the details of the the evaluation.

Algorithm 5.2 Task Completion Evaluation (TCE)
Input: Tsk[i], Tsk[cur], Tab, TS , and TrustP
Output: Trusti : the trustiness of Tsk[i] to be able to complete;
1: Pcur, Pi ← powers of Tsk[cur] and Tsk[i] from Tab;
2: Pgi ← progress of Tsk[i] from Tab;
3: Pg′i ←progress to time ration of Tsk[i] from Tab;
4: ti = (1− Pgi)/Pg′i;
5: TS

i = TrustP ∗ TS ∗ Pcur/Pi;
6: Trusti = TS

i /ti;
7: if Trusti > 1 then
8: Trusti = 1;
9: end if

10: return Trusti

At the beginning, TCE acquires several pieces of necessary
information from Tab. For current task Tsk[cur], TCE needs the
execution power Pcur . For the targeting task Tsk[i], TCE needs to
access the execution power Pi, the execution progress Pgi, and the
progress to time ratio Pg′i. The entire information fetching process
is given in line 1 - 3.

With these pieces of information, TCE calculates how long that
Tsk[i] still needs before completion and how long the system can
offer Tsk[i] for execution. Here ti is defined as the time required
for Tsk[i] to finish which is calculated in line 4 using parameters
Pgi and Pg′i. T

S
i is defined as the time that the system is able

to provide for Tsk[i] before the power outage. T s
i is calculated in

line 5. Also because TS is an estimated value, we need to consider
about its trustiness TrustP .

Finally, Given ti and TS
i , TCE is able to calculate Trusti in

line 6. Then, TCE trims the value of Trusti to be between 0 and 1
and delivers Trusti to NVP scheduler to make final decision.

In the next section, the voltage monitor is introduced, which is
in charge of conducting voltage detection. Also, its sub-algorithm
DPA needs to reply the calls from NVP system for analyzing the
discharging power of the capacitor.

5.2 Voltage Monitor
In this section, a voltage monitor designed to conduct voltage
measurement and power analysis will be presented.

5.2.1 Voltage Detection
Currently, the voltage regulators only warn NVP systems about
the “poor” quality of the harvesting power through I/O interrupts
based on the hardwired voltage threshold. However, this threshold
has a large impact on the overall performance. On one hand, If
the threshold is too high the NVP system wastes energy with
frequent checkpointing. On the other hand, if the threshold is too
low, the checkpointing may fail. Therefore, the NVP system needs
to proactively initiate voltage detection.

Many traditional techniques choose Vcc as the monitoring volt-
age source. However, because of the regulator, Vcc remains stable
unless the stored energy is almost drained out. In this way, once
the voltage monitor detects the Vcc drop, both NVP scheduler and
checkpoint handler may not have enough time to respond, result-
ing in the progress setback. Therefore, Vcc is ruled out as voltage
detection source.

One viable and appropriate monitoring source is the voltage on
the storage capacitor which reflects the actual power supply of the
energy harvester. Specifically, if the voltage on the storage capaci-
tor drops, the energy harvester generates less power than the NVP
system consumes. Otherwise, the harvested power is sufficient to
drive the NVP system.

Detecting the voltage of the storage capacitor requires collab-
oration between hardware and software. On the hardware side, the
output of the storage capacitor needs to connect to an analog to dig-
ital converter (ADC) channel of the MCU. On the software side, the
ADC needs to periodically sample the storage capacitor’s voltage.
Here we define Vcap as the voltage on the storage capacitor.

5.2.2 Power Analysis
Knowing the voltage of the storage capacitor Vcap is not enough
to determine whether the harvesting power can support the NVP
system and there are mainly two reasons:

1) First, for the storage capacitor, even if Vcap is low, the harvest-
ing power supply can still be sufficient to support the NVP sys-
tem if it is recovering;

2) Second, the power consumption of tasks varies. Therefore, even
if the harvesting power can support the current task, it cannot
be guaranteed to support others which consume more power.

These two concerns can be eased by calculating the discharging
power of the capacitor. This is because working status of the system
is directly determined by the amount of energy on the capacitor. Al-
so, given the same working power, the changes of the discharging
power equals the changes of the harvesting power. So given cur-
rent ongoing execution of Tsk[cur], the calculation of discharging
power on the capacitor is able to estimate how long (TS) the sys-
tem can be in execution before the outage happens, which is used
as the input of the TCE Algorithm.

Therefore, with current task Tsk[cur], task information table
Tab, and ADC sample period TADC , DPA algorithm is able to
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calculate the discharging power of Tsk[cur]. With the discharging
power, DPA can further estimate the duration TS for the system to
work before the outage happens. The estimation also comes with
the trustiness TrustP evaluation.

Algorithm 5.3 Discharging Power Analysis (DPA)
Input: Tab, and TADC .
Output: TS and TrustP .
1: < ∆Ecap >N← actual reduction of the capacitor energy;
2: < ∆Eest

cap >N← estimated reduction of the capacitor energy
3: < ∆Pcap >N← actual reduction of the discharging power;
4: < Ψ >N← correctness of the estimations;
5: P ′

cap ← the estimated reduction of the discharging power;
6: for each ADC cycle i from 1 to N + 1 do
7: if i > 1 then
8: ∆Ecap(i− 1) = C[V 2

cap(i− 1)− V 2
cap(i)]/2;

9: ∆Pcap(i− 1) = ∆Ecap(i− 1)−∆Ecap(i);
10: if ∆Pcap(i) > 0 then
11: K = ν; /* discharging power reduced */
12: else
13: K = υ; /* discharging power increased */
14: end if
15: P ′

cap = (1−K)P ′
cap +K∆Pcap(i);

16: ∆Eest
cap(i− 1) = ∆Ecap(i− 2) + P ′

cap;
17: if ∆Eest

cap(i− 1) < ∆Ecap(i)− 1 then
18: Ψ(i) = 0; /* underestimate */
19: else
20: Ψ(i) = 1; /* overestimate */
21: end if
22: end if
23: end for
24: Erem

cap = C[Vcap(N + 1)2 − V 2
ck]/2

25: ∆Eest
cap =

∑N
i=1 ∆Eest

cap(i)/N

26: TS = TADC ∗ Erem
cap /∆E

est
cap

27: TrustP =
∑N

i=2 Ψ(i)/(N − 1);
28: return TS and TrustP ;

DPA is called each time by the NVP scheduler to evaluate the
discharging power on the capacitor before actually conducting task
scheduling. At the beginning, DPA initiates parameters including
< ∆Ecap >N : an array to store N times of energy reductions on
the capacitor,< ∆Eest

cap >N : an array to storeN times of estimated
energy reduction on the capacitor, < ∆Pcap >N : an array to
store N times of discharging power reduction on the capacitor,
< Ψ >N : N times of the correctness of the estimation, and P ′

cap :
the estimated reduction of the discharging power. The initialization
process is shown in line 1 to 5.

After initialization, DPA calls ADC to sample N + 1 voltage
samples on the capacitor. After each sampling, DPA first calculates
the reduction of the energy ∆Ecap on the storage capacitor which
is shown in line 8. Then, in line 9, DPA further calculates the
reduction of the discharging power ∆Pcap. To signal the status of
the discharging power, DPA introduces two coefficients υ and ν
(υ > ν and υ + ν = 1), If ∆Pcap > 0, the discharging power is
reduced and DPA assigns ν to the weight factor K, otherwise,DPA
assigns υ to K. The rationale behind the weight assignment is to
let the system be more aware of the most recent increase of the
discharging power, which indicates that the harvesting power is
reducing. The comparing process is shown in line 10 - 14.

After calculating ∆Pcap from the real samples of Vcap, in
line 15 to 21, DPA conducts the evaluation procedure. At first,
in line 15, DPA estimates the reduction of the discharging power
as P ′

cap. The estimation uses the weight factor K. If the real
discharging power is reduced (harvesting power recovers), DPA
gives more weight to estimation, otherwise, DPA gives more weight
to the real discharging power. After the calculation of P ′

cap, DPA

further estimates the energy reduction ∆Eest
cap on the capacitor,

which is shown in line 16. After estimation, in line 17 to 21, DPA
compares the estimation ∆Eest

cap with the real energy reduction
∆Ecap. If DPA underestimates the reduction of the discharging
power, the estimation is invalid and DPA assigns Ψ = 0 to indicate
the invalidation. If DPA overestimates the reduction, it accepts the
estimation and assigns Ψ = 1 to indicate the acceptance. In this
way, the estimation can be more aware of the loss of the harvesting
power.

After evaluation, DPA calculates the remaining energy Erem
cap

in line 24 and the average estimated energy reduction ∆Eest
cap in

line 25. Then, based on Erem
cap and ∆Eest

cap, in line 26, DPA esti-
mates the duration TS for system to work before the power outage
happens. Accompanied with the estimation of TS , DPA also calcu-
lates the trustiness TrustP of the estimation in line 27.

After the calculation, DPA returns TS and TrustP for N-
VP scheduler to use as references to conduct task scheduling for
progress maximization.

5.3 On-Demand Dual-Backup Differential
Checkpoint Handler (OD2CH)
In this section, an On-Demand Dual-Backup Differential Check-
point Handler (OD2CH) is proposed to ensure successful check-
pointing. During checkpointing, all registers will be pushed into the
stack as described in Section 3. Then, all contents in the stack will
be checkpointed to NVM.

To conduct OD2CH , the energy stored in the storage capac-
itor is capable of supporting one successful checkpointing. Once
V < Vck has been detected by the voltage monitor, checkpointing
handler will be waken by the voltage monitor to conduct check-
pointing. Vck is crucial to ensure a successful checkpointing and is
calculated in Eq. 1

Vck =

√
2Estack

C
+ V 2

safe (1)

where Estack is the energy required to checkpoint the entire stack
region. Vsafe is an safe voltage above minimum input voltage of
the regulator. Once the checkpoint is finished, Vcap should be no
less than Vsafe. As the stack region is predefined in most embedded
systems, Estack is a constant, so are C and Vsafe. Therefore, Vck

can be measured off-line. The parameters are selected for the worst-
case scenario, which ensures the success of checkpointing.

Two areas in NVM should be reserved for OD2CH to conduc-
t checkpointing alternatively in case of a failed checkpoint. With
double backups, even if current checkpointing fails, the NVP sys-
tem can still roll back to the previous successful checkpoint other
than start over from the very beginning. During each checkpoint-
ing, OD2CH also compares the new data with the old backup and
only checkpoints the differences. This is to minimize the energy
consumption of checkpointing.

After checkpointing, the Routine Handler will trigger sleep
event for the NVP system.

5.4 Routine Handler
In this section, a routine handler is proposed to handle sleep and
wake-up events of the embedded system.

5.4.1 Sleep Event
Once the checkpoint handler saves the system states into NVM,
the routine handler will put the system into sleep mode other than
continuing execution or shutting down the entire system. There are
mainly three reasons that make sleep mode a better option than the
other two.
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1) After checkpointing, the remaining energy is insufficient to
support another checkpointing. Therefore any further execution
wastes energy as the state cannot be saved.

2) It is much faster for NVP system to recover from sleep mode
than cold reboot after being shut down.

3) Once the system is dead, it will automatically restarts once
the input voltage is beyond the cold start voltage. However,
if the power supply is still insufficient, the system will fail
again at the very beginning. However, in sleep mode, ADC and
timer are still allowed to monitor the voltage with negligible
energy consumption. So the system can wake up when power is
sufficient.

5.4.2 Wake-up Event
Once power comes back on again, the routine handler will wake
up the NVP system given a preset wake-up voltage Vwak, which
should at least support one checkpointing and a period of execution.
Notice that, if the system is dead and once power comes back on
again, the NVP system will initiate the cold start with very low
voltage. In this case, if the harvesting power is insufficient, the NVP
system will be stuck at the very beginning as the harvested energy
will always be drained out and cannot be preserved. Our solution is
that at the very beginning of the startup stage, NVP system needs
to measure Vcap. If Vcap < Vwak, the NVP system needs to go
back to sleep mode. This can avoid the system from stagnating at
the cold starting stage.

6. Experiments
6.1 Experimental Setup
In this section, details of experimental setups on hardware and
software are described.

6.1.1 Hardware Platform
The experiment platform of NVP embedded system is TIs M-
SP430FR5739 ultra-low-power evaluation board, which consists of
a 16-bit MCU, a 10-bit ADC module, a 1kB volatile SRAM, a 16K-
B nonvolatile FRAM memory, and different peripherals for sensing
and wireless sensing applications. The Bq25570 ultra-low-power
regulator is used to supply a stable voltage, which is able to work
with a minimum of the 120mV input voltage and a maximum of
4.2V boost voltage. The only hardware overhead of our design is
that there should be an extra wire to connect between the storage
capacitor and the ADC channel, so that the voltage on the capacitor
can be constantly monitored.

6.1.2 Power Traces
To evaluate the performance of the NVP scheduler, five different
power traces are generated as shown in Figure 7.

The source power is provided by MSP430FR5969 evaluation
board which is programmed to generate different power traces
through a GPIO pin which can provide 3.6V output once the pin
is set to be high, otherwise the output is 0. Then, power will
be harnessed by the power regulator Bq25570 to power the M-
SP430FR5739. Power source 1 is for the output pin to set low for
0.9 seconds in every 10 seconds period; Power source 2 is for the
output pin to set low for 2 seconds in every 5 seconds period; Pow-
er source 3 is for the output pin to set low for 4 seconds in every
5 seconds period; Power source 4 is for the output pin to set low
for 1 seconds in every 1.3 seconds period; Power source 5 is for the
output pin to set high all the time.

6.1.3 Software Setup
Experimental software includes a lightweight NVP scheduler and
the proposed three functional modules of Voltage Monitor, Check-

0

50 Trace 1

0

50 Trace 2

0

50 Trace 3

0

50 Trace 4

Time (s)
0 30 60 90 120 150 180 210 240 270

S
o
u

r
c
e
 P

o
w

e
r
 (

m
W

)

0

50 Trace 5

Figure 7. Power Trace Used for Experiments

point Handler, and Routine Handler. The original scheduler of the
system is round-robin scheduler. For NVP scheduler, the Voltage
Monitor keeps monitoring the voltage of the capacitor. Specifical-
ly, for every TADC time period, the timer will wake up the ADC
module for a short period of time during which Vcap will be sam-
pled and analyzed, and the progress to time ratio of the executing
task will be updated. If Vcap > Vwarn, the original round-robin
scheduler is in charge. Otherwise, NVP scheduler will take over
task scheduling for progress maximization. Before presenting ex-
perimental results, experimental parameters are listed in Table 2.

Table 2. Task Information
C TADC Vwarn Vck Vsafe ν υ ϕ ψ

470µF 37.5ms 2.5V 1.2V 0.5V 0.2 0.8 0.9 0.1

The benchmarks include three Un CK tasks of acceleration
measurement (the results are written in SRAM), temperature sens-
ing (the results are written in SRAM), and UART communication
(the data are written in FRAM). There are also three CK tasks
including register operations, SRAM writes, and FRAM writes.
These six benchmarks are iterative and independent to each other.

6.2 Experimental Results
With power traces, the experiments start with the power measure-
ments of these six benchmarks. The baselines of this experimen-
t are NoCP and RRCP. NoCP represents a round-robin scheduler
without checkpoint handler. The RRCP represents the round-robin
scheduler with checkpointing ability. The proposed NVP scheduler
which is incorporated into the baseline RRCP is defined as NVCP.
For NVCP, the voltage monitor is always active to sample the volt-
age V on the capacitor. Once V < Vwarn, NVP scheduler is acti-
vated and takes over the task scheduling, otherwise, it remain inac-
tive.

6.2.1 Energy Consumption Analysis
The power consumption of the six benchmarks is measured in
working mode with a stable power supply. Figure 8 shows the
measurements.

All benchmarks are iterative and the duration of each iteration is
trivial and negligible. For instance, the benchmark 6 has the largest
iteration period of 24ms and benchmark 1 has the lowest period
of 0.18ms. During these periods, the changes of voltage on the
capacitor are negligible. So it is reasonable to use µJ/Iteration
representing the power consumption of each tasks.

6.2.2 Sleep Mode vs. Working Mode
The first experiment is to show the power consumption of NVP
system in sleep mode. In Figure 9, we adjust the Vcc from 3.7 to
1.4 gradually and measure the input current.
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As we can see from Figure 9, in sleep mode, the maximum cur-
rent is 0.3392mAwhich is significantly smaller than 16.724mA in
working mode. Once the voltage drops, the current in sleep mod-
e remains almost the same. Once the voltage drops below 1.8V,
the system is dead and MCU loses control of all the peripherals
and previously terminated GPIOs can allow current to go through,
which increases the current. We can see that the NVP system in
sleep mode consumes much less power than in working mode,
therefore, it is better to go to sleep after conducting checkpointing.

6.2.3 Progress Comparison
Figure 10-15 show the average execution speed of each task in term
of iterations per second given different power traces. The larger the
speed, the more energy is used for execution, and vice versa.
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Figure 10. Execution Speed of Register Operation

Figure 10 shows the execution speed of register operation. As
we can see from trace 5, when power is sufficient and stable, NVP

scheduler will not be activated. Therefore, the execution speeds of
all comparing techniques are almost the same, except that NVCP
requires a constant voltage monitoring, however, the overhead of
which is trivial and will be evaluated in section 6.2.4. When power
becomes weaker, the execution speed for using NVCP is reduced
more drastically. Take a look at power trace 3 and 4, under which,
the source powers are extremely weak. Trace 3 enables NVCP to
deliver the execution speed of 65.9 Iterations/s which is only
29.9% of what the NoCP can deliver and 29.3% of what RRCP
can deliver. The reason why the execution is slower when NVCP
is active is that more energy will be used to execute Un CK tasks.
The execution speed of CK task such as register operation will be
reduced because of reduced energy. Under the worst-case scenario
of power traces 4 where the source power is minimum and sparse,
only NVCP shows the execution speed of 58.2 Iterations/s and
baselines show on speed. This is because, the source power is so
small and without sleep mechanism NoCP and RRCP will cause
NVP system to stuck at cold starting once the stored energy has
been drained out.
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Figure 11. Execution Speed of SRAM Writes

Figure 11 shows the execution speed of SRAM writes. Similar
to register operation, when power is sufficient and stable, NVCP
will not be activated. When power becomes weaker, the execution
speed for using NVCP is reduced more drastically. Taking a look at
trace 3, as more energy is used by Un CK tasks, for SRAM writes,
NVCP only delivers the execution speed of 30.95 Iterations/s
which is only 29.2% of what RRCP can deliver and 30.44% of
what NoCP can deliver. Yet under the worst-case scenario of power
trace 4 where the source power is extremely weak and sparse,
NoCP and RRCP cause NVP system to stuck at cold starting and
only NVCP shows the execution speed of 27.32 Iterations/s.
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Figure 12. Execution Speed of FRAM Writes

Figure 12 shows the execution speed of FRAM writes. As we
can see, similar to SRAM writes, the CK tasks share less energy
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when power becomes weaker, thus, the execution speed of FRAM
writes for using NVCP is reduced more drastically. under pow-
er trace 3, NVCP can only deliver the execution speed of 14.7
Iterations/swhich is only 29.28% of what RRCP can deliver and
31.14% of what NoCP can deliver. And similarly, under the worst-
case scenario of power trace 4, NoCP and RRCP shows no progress
and NVCP shows the execution speed of 12.98 Iterations/s.
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Figure 13. Execution Speed of Thermometer

Figure 13 shows the execution speed of Thermometer which
samples proximity temperature and transfers it into digital repre-
sentations. Thermometer is an Un CK task as the unfinished tem-
perature data is inaccurate and useless. Therefore, when source
power becomes weaker, more energy portions will be given to
uncheckponitable tasks in an effort to finish them before the power
fails. As we can see, when power is sufficient and stable, NVCP
will not be activated. When power becomes weaker, the execution
speed for using NVCP is increased significantly over baseline tech-
niques. Under power trace 3, NoCP and RRCP won’t be able to
keep the progress for the unfinished Un CK tasks, so the execution
speeds are the same. However, NVCP assigns a large portion of
energy for Un CK tasks and the execution speed of NVP is 50.92
Iterations/s which is 712.77% of what baseline can deliver. Un-
der the worst-case scenario of trace 4, NoCP and RRCP cause NVP
system to stuck at the cold starting, hence no progress is made. Yet
NVCP shows the speed of 24.41 Iterations/s.

Power Traces
1 2 3 4 5

E
x
ec

u
ti

o
n

 S
p

ee
d

 (
It

er
a
ti

o
n

s/
s)

0

5

10

15

20

25

30

NoCP

RRCP

NVCP

Accelerometer + SRAM Writes

Figure 14. Execution Speed of Accelerometer

Figure 14 shows the execution speed of Accelerometer which
samples 3-axis accelerations and transfers them into digital rep-
resentations. Similar to Thermometer, Accelerometer is also an
Un CK task and the unfinished sensing data are inaccurate and use-
less. Therefore, when source power becomes weaker, a larger part
of energy will be used to execute Accelerometer for it to complete
before power fails. As we can see, when power becomes weaker,
the execution speed for using NVCP is increased significantly over

baseline techniques. Under power trace 3, NVCP delivers the exe-
cution speed of 11.8 Iterations/s which is 513.53% of what the
baseline can deliver. And under power trace 4, only NVCP shows
the execution speed of 6.79 Iterations/s, no progress is made by
NoCP and RRCP.
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Figure 15. Execution Speed of UART communication

Figure 15 shows the execution speed of UART communication
which constantly send data through serial port given the baud rate
of 9600. Similar to the other two Un CK task, unfinished UART
communication is useless and should be forfeited. The unfinished
transmission data should be transmitted all over again when power
is recovered. Therefore, when source power becomes weaker, a
larger part of energy will be used to execute UART communication
in an effort to finish it before the power fails. As we can see, when
power becomes weaker, the execution speed for using NVCP is
increased significantly over baseline techniques. Under power trace
3, NVCP delivers the execution speed of 2 Iterations/s which is
381.24% of what the baseline can deliver. Notice that under power
trace 4 where the harvesting power is minimum and sparse, there
is no progress been made by all techniques. This is because, UART
consumes a significant amount of energy which is more than the
stored energy can provide. Hence NVCP lowers down its priority
and assigns gives more priorities to other tasks which is more likely
to finish before the power fails.

6.2.4 Efficiency and Overhead
In this section, the efficiency and overhead of NVCP is evaluat-
ed. Considering the power consumption of each benchmark in Fig-
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Figure 16. Energy Efficiency
ure 8, we compare the energy efficiency of NVCP with baseline
techniques. For trace 1, NVCP shows 10.87% improved energy ef-
ficiency than NoCP and 10.26% improved energy efficiency than
RRCP. For trace 2, NVCP shows 24.46% improved energy effi-
ciency than NoCP and 22.48% improved energy efficiency than
RRCP. For trace 3, NVCP shows 79.44% improved energy effi-
ciency than NoCP and 74.79% improved energy efficiency than
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RRCP. For trace 4, since NoCP and RRCP cause NVP system to
stuck at the cold starting, the improved energy efficiency made by
NVCP over the baselines is infinite. For trace 5 NVP scheduler has
not been triggered, there is no obvious difference in terms of energy
efficiency. Overall, the advantages are significant.
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Figure 17. Energy and Time Overhead

Due to the periodical voltage monitor, there are extra amounts
of energy and time overhead compared with baseline techniques.
From Figure 17, both energy and time overhead increase when
the source power becomes weaker. For the worst-case scenario in
power trace 3, NVP scheduler generates extra 3.52% energy over-
head and 7.79% time overhead compared with baseline round-
robin scheduler. However, considering the extra gained progress,
the influence of overhead is negligible. Notice that based on the en-
ergy and time consumed by voltage monitor, the power consump-
tion of voltage monitor is 0.08mW which is more than enough to
support by source power if it can the charge up the capacitor.

7. Conclusion
This paper proposes a progress maximization multi-tasking sched-
uler, known as NVP scheduler, assisted with three functional mod-
ules including Voltage Monitor, Routine Handler, and Checkpoint
Handler to maximize task progress of embedded system when pow-
er supply is frequently interrupted. The proposed NVP scheduler
can be easily incorporated into embedded systems as an auxiliary
to existing lightweight scheduler or OS with great compatibility
which take effect when harvesting power is not enough. Experi-
ments confirm the effectiveness of the proposed techniques.
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