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Abstract---Low-power brain-inspired hardware systems have 
gained significant traction in recent years. They offer high energy 
efficiency and massive parallelism due to the distributed and asyn-
chronous nature of neural computation through low-energy 
spikes. One such platform is the IBM TrueNorth Neurosynaptic 
System.  Recently TrueNorth compatible representation learning 
algorithms have emerged, achieving close to state-of-the-art per-
formance in various datasets. An exception is its application in 
temporal sequence processing models such as recurrent neural 
networks (RNNs), which is still at the proof of concept level. This 
is partly due to the hardware constraints in connectivity and syn-
aptic weight resolution, and the inherent difficulty in capturing 
temporal dynamics of an RNN using spiking neurons. This work 
presents a design flow that overcomes the aforementioned diffi-
culties and maps a special case of recurrent networks called Long 
Short-Term Memory (LSTM) onto a spike-based platform. The 
framework is built on top of various approximation techniques, 
weight and activation discretization, spiking neuron sub-circuits 
that implements the complex gating mechanisms and a store-and-
release technique to enable neuron synchronization and faithful 
storage. While many of the techniques can be applied to map 
LSTM to any SNN simulator/emulator, here we demonstrate this 
approach on the TrueNorth chip adhering to its constraints. Two 
benchmark LSTM applications, parity check and Extended Reber 
Grammar, are evaluated and their accuracy, energy and speed 
tradeoffs are analyzed. 

Keywords--Spiking Neural Networks, Recurrent Neural Net-
works, Long Short-Term Memory, Neuromorphic Hardware 

I. INTRODUCTION 

Inspired by neurons, building blocks of our brain, and their 
connections, various versions of artificial neural networks have been 
designed and achieved high performance in representation learning 
tasks such as image classification and pattern recognition. However, 
these feedforward neural networks are not capable of retaining 
temporal dependencies in a sequence, and are not suitable to learn 
temporal patterns from time-series where the information at the current 
time step is dependent on past steps. While recurrent neural networks 
(RNNs) address this issue with feedback connections, it is difficult to 
learn long temporal dependencies using vanilla RNNs [1]. Long Short-
Term Memory (LSTM) improves RNN with a complex gated 
mechanism, which allows it to forget, remember and output 
information [2]. Its ability of learning long-term dependencies makes it 
a prominent and successful model for time-series processing. 

The advents of energy-efficient large-scale neuromorphic 
hardware enabled low power implementation of large-scale neural 
networks for real-time applications. One of the examples is IBM’s 
Neurosynaptic Processor, “TrueNorth”. Operating in the spiking-
domain, TrueNorth has achieved close to state-of-the-art results in 

various pattern recognition tasks [3] with very high energy efficiency. 
Converting pre-trained network to a SNN has also produced good 
results in pattern recognition [4] on platforms other than TrueNorth. 
However, almost all of these applications aim at non-recurrent 
networks, such as convolutional neural networks. Due to the hardware 
constraints in connectivity and synaptic weight precision, and the 
inherent difficulty in capturing temporal dynamics of an RNN using 
spiking neurons, implementing recurrent neural networks (RNNs) for 
temporal sequence processing in spike-domain is still at the proof of 
concept level [5].  

In this work, we present a design flow that overcomes the 
aforementioned difficulties and maps LSTM, a special case of RNN, 
onto a spike-based platform, and implement them using the TrueNorth 
processor.  We validate the implementation using two benchmark 
LSTM models. The framework is built on top of various approximation 
techniques, including weight and activation discretization, spiking 
neuron sub-circuits that implements the complex gating mechanisms 
and a store-and-release technique that enables neuron synchronization 
and faithful storage.  

To the best of our knowledge, there has been no publication on 
implementing LSTM in spike domain. The following summarizes our 
contributions: 

1. We developed a modular approach to convert a standard LSTM to a 
Spiked-based LSTM. The modular approach allowed for 
incremental mapping onto the TrueNorth chip.  

2. To have a faithful representation of inputs, outputs and internal 
activation of an LSTM in spike-domain, encoding heuristics are 
adopted, which maintain spike representation consistency 
throughout the network. 

3. Novel neuron circuit design is proposed to approximate the sigmoid 
and hyperbolic tangent functions. The relationship between stored 
membrane potential, the random firing threshold and the firing rate 
is analyzed.  

4. To synchronize the gated modules and achieve recurrent processing 
in the Spike-based LSTM, we developed a store-and-release 
mechanism using locally generated and globally consistent store and 
release clock spikes. 

II. BACKGROUND 

A. LSTM 

The main feature of a recurrent neural network is that it can learn 
sequential information by considering the information from previous 
time steps. The loop, as shown in Figure 1(a), allows information to be 
passed from one step of the network to the next thus allowing the 
information to persist. 

The length of sequence or how far a vanilla RNN can remember is 
hindered by vanishing or exploding gradients [1] since 



backpropagation-through-time results in an unrolled network, which 
can be very deep. To overcome this, LSTM utilizes a special structure 
of gates to selectively allow information to persist in the cell state. Its 
structure provides the ability to remove or add information to the cell 
state, carefully regulated by gates.  Gates are a way to optionally let 
information through. They are composed out of a sigmoid and a 
pointwise multiplication operation. The input gate, forget gate and the 
output gate allowed for adding, removing and outputting information 
to or from the cell state. This makes LSTM successful in tasks like lan-
guage modeling, machine translation, speech recognition, video to text 
etc. 

There are many variations of LSTM such as Gated Recurrent Units 
(GRU) [6], Peephole LSTM [7], etc. In this work, we aim at a standard 
LSTM model [2], which is shown in Figure 1(b). A single standard 
LSTM has a forget, input and output gate which are sigmoid 
activations, and hyperbolic tangent activations to squash incoming 
inputs and outgoing output. Its output ht is generated based on the 
equations shown in Figure 1(c), where ft, it and ot are the forget, input 
and output gate vectors, ct and ht are cell state and output vectors, and 
Wf, Wi, Wo and WC are trained weight matrices. 

B. TrueNorth Architecture 

The TrueNorth neurosynaptic processor is inspired by the parallel 
architecture of biological neural systems. It is highly efficient, scalable 
and flexible. The TrueNorth processor consists of 4096 cores [8] each 
with 256 neurons and 256 axons connected via 256x256 directed 
synaptic connections, thus providing 1 million programmable neurons 
and 268 million configurable synapses. The weight of the 

corresponding synapse in the crossbar is selected from 4 possible 
integers determined by the axon type at each neuron. 

TrueNorth uses an efficient event-driven architecture where, 
address event representation (AER) is adopted for spike representation 
and communication between neurons. These spike events are sparse in 
time and active power is proportional to firing activity thus making it 
highly efficient and low power. Normally, the system operates in 1 ms 
timesteps called ticks within which membrane potential is processed 
and spike events routed asynchronously inside the chip. A spike 
generated by a neuron can target any single axon on the chip.  Figure 
2(a) shows a structural view of a TrueNorth core with axons as input 

and neurons as outputs and synapses linking them. This representation 
is similar to a traditional neural network. Figure 2(b) shows a functional 
view of core as a crossbar where horizontal lines are axons, cross points 
are individually programmable synapses, vertical lines are neuron 
inputs, and triangles are neurons. Spikes flow from axons via active 
synapses to neurons. 

The synaptic connections and their weights between axons and 
neurons are captured by a crossbar matrix at an abstract level along with 
connections from neuron to a single axon across cores. This abstraction 
is called a Corelet [9], which represents a network on the TrueNorth 
cores by encapsulating all details except external inputs and outputs as 
shown in Figure 2(c). The creating, composing and decomposing of 
corelets is done in an object-oriented Corelet Language in the 
programming paradigm for TrueNorth called Corelet Programming 
Environment (CPE). Programming TrueNorth includes creating 
corelets with specific neuron behaviors, synaptic connections, weights 
and delays to achieve the desired functionalities. Multiple corelets can 
be combined through their input and output connectors.  

III. PROPOSED IMPLEMENTATION 

Event driven neuron operation and asynchronous inter-core 
communication are representative features of many hardware 
implementations of Spiking Neural Networks (SNNs) [8] [10] [11] 
including the TrueNorth processor. It reduces the hardware active 
power, however, also imposes a fundamental challenge to realize the 
LSTM. As shown in Figure 1(a), the proper function of an LSTM relies 
on the synchronization of neuron inputs. For example, the output vector 
ot-1 in time step t-1 must concatenate with the input vector xt in time 
step t to calculate the new output vector. On an event-driven hardware 
platform, such as TrueNorth, special neural circuits must be designed 
to enable such synchronization. Other challenges of implementing the 
LSTM on a neurosynaptic processor in the spike-domain include a lack 
of low precision algorithms which can achieve results typically 
observed when using floating point precision based non-linear 
activation functions such as sigmoid and tanh, and the difficulty in 
representing numerical values in spike domain. 

In this work, we address the aforementioned challenges and present 
some key techniques that facilitate Spike-based LSTM and its mapping 
onto the TrueNorth chip. We start with approximations made to the 
LSTM and our constrain-then-train-then-approximate process, which 
minimizes the approximation errors. In the next section, we discuss 
how values are represented using spikes along with the external and 
internal encoding schemes of the Spike-based LSTM. Then we 
describe the constituent modules of LSTM on TrueNorth and how to 
maintain the temporal relation of these modules’ activities. Finally, we 
present the mapping algorithm. 

A. “Constrain-Then-Train-Then-Approximate” 

Several approximations on the LSTM are adopted during the 
mapping to TrueNorth. We consider these approximations during 
training to minimize potential errors. We call this process “constrain-
then-train-then-approximate.” 

The synaptic weights in TrueNorth have limited precision and 
coarse granularity. They are represented using 9-bit signed binary data, 
and there can be at most 4 different weights for all synapses connecting 
to the same axon. Although binary and ternary weights have been used 
to produce close to state-of-the-art results for feed-forward network 
architectures [12] [13], both our preliminary work and the existing 
research [14] show that it is difficult to train LSTMs with binary and 
ternary weights. Power2-ternarization, which rounds the integer part 
and fractional part of the weight separately [14], gives good training 
results. However, it only provides an efficient way to discretize the 
weights. High precision data is still needed for the LSTM to work 
properly. Instead of training the network using ternary weights, in this 
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work, we approximate the weights of a regularly trained LSTM via 
scaling and rounding. 

Due to the hardware constraints, the non-linear activation functions 
such as tanh and sigmoid gates are also approximated using piece-wise 
linear functions. Their implementation details will be discussed in 
Section 3.4.  

To minimize the potential errors, we constrain the network during 
the training to reflect those approximations. Firstly, the LSTMs are 
trained using constrained weights (-1 to 1 or -2 to 2) such that these 
weights can be scaled to a hardware supported range. Secondly, we 
replace the gates (tanh and sigmoid) with their piece-wise linear 
counterparts (hard tanh and hard sigmoid), which have steeper slopes 
as shown in Figure 7(a) and (b) and in Eqn. (2) and (4). The weights of 
the trained network are floating point values thus they are scaled and 
rounded off to the required precision and range while converting to 
spike domain. This is done by approximation. 

B. Temporal Behavior of Neurons in LSTM 

The complex gating mechanism of the LSTM requires 
synchronization of inputs, gate outputs and the cell state feedback. 
Synchronization is also necessary to maintain the temporal dynamics 
of the recurrence of the LSTM output in the network. Representing this 
level of synchronization using spiking neurons is inherently difficult 
given their asynchronous nature. We overcome this limitation using a 
store-and-release mechanism. It is built atop a class of special neural 
circuits, in which neurons operate in two modes, store and release. 
During the store mode, the neurons gate their outputs, receives input 
spikes and at the same time accumulate their membrane potential. 
During the release mode, the neurons issue output spikes at an average 
rate proportional to its membrane potential either stochastically or in a 
burst. Two internal clock signals controls when a neuron enters or exits 
the store/release modes through the application of highly 
negative/positive potential respectively. How to configure and connect 
asynchronous neurons to form such synchronous neural circuits will be 
discussed in Section 3.4.  

Using the store-and-release mechanism, the LSTM works in two 
phases, processing phase and I/O phase. The entire LSTM network is 
divided into three partitions as shown in Figure 3. (a) and (b). They are 
referred to as input, processing and output partitions and color coded 
using blue, red and green respectively. Except the input partition, all 
inputs of the processing and output partitions are buffered using store-
and-release neurons. The inputs to the processing partition stores 
during the I/O phase and releases in the processing phase, while the 
inputs to the output partition stores in the processing phase and releases 
in the output phase. For the input partition, one of its inputs ht-1 is 
released only in the I/O phase, and by careful control we can also make 
sure that the external inputs, xt , are issued only during the I/O phase, 
therefore, the input partition is active and releases output spikes only 
during the I/O phase. During the implementation, the store-and-release 
neurons will be merged into their subsequent function modules and be 
implemented as store-and-release tanh or store-and-release sigmoid, as 
we will present in Section 3.4. The only exception is the store-and-
release neurons before the dot product, which will stay stand-alone. 

How these three partitions operate alternatively is shown in Figure 
3. (c). The duration of each phase is referred as phase length (PL). 
During the I/O phase, the input partition works on the matrix-vector 
multiplications to generate the operands for the forget, input and output 
gates. The results of the matrix-vector multiplications are buffered by 
the store-and-release neurons at the input of the processing partition. In 
the processing phase, these neurons release what they have stored and 
the processing partition generates the cell state (Ct) and partial output 
(ot), which are buffered by the store-and-release neurons at the input of 
the output partition. During the next I/O phase, the Ct and ot will be 
released and be used to calculate the ht, which will be forwarded to the 
input partition to calculate the matrix-vector multiplications again. 

These phases are maintained through local clock (globally consistent) 
spikes which produce the store and release actions for all the store-and-
release capable modules.  

C. Encoding and Spike Representation  

In an LSTM, numerical values (inputs, outputs and activations) 
have ranges in both negative and positive direction as the weights learnt 
can be negative and also the tanh function outputs values in the range -
1 to 1. Since the spikes are binary (on-off), there is an inherent difficulty 
in representing both positive and negative values with a single channel 
of spikes. A simple solution is to constrain the values during training to 
a positive range by replacing tanh with ReLU. ReLUs have produced 
improvements for vanilla RNNs [15] due to its ability to stop vanishing. 
However, vanishing gradients is no longer a problem in LSTM due to 
its gating scheme. On the contrary, using unbounded activation 
functions like ReLU in an LSTM can cause it to diverge thus resulting 
in worse performance [16]. Therefore, we avoid replacing tanh with 
ReLUs and instead represent positive and negative values using a 
positive and negative channel of spikes respectively.  

The inputs and outputs of an LSTM are rate-coded where the firing 
rate is determined by the phase length (ܲܮ) and the max value (݉ݔ) to 
be represented in that phase. If we scale up the trained weights with a 
scaling factor ݂ݏ, the input and output should be scaled down by the 
same factor. Therefore, the number of spikes (nS) needed to represent 
value 1 can be calculated as:  

݊ܵ ൌ ܮܲ ሺ݉ݔ ∗ ⁄ሻ݂ݏ . 
To represent a numerical value Iv, the spike firing rate is set to 

ሺݒܫ ∗ ݊ܵሻ ⁄ܮܲ , and n spikes in a phase represent the value: 

݁ݑ݈ܸܴܽܲ ൌ
#௦௣௜௞௘௦

௡ௌ
 . 

The choice of ݉ݔ	and phase length determines the precision of 
values that can be represented by spikes, as each spike represents 1/݊ܵ 
in terms of numerical value.  

All internal variables are rate-coded, except Ct. We found that the 
cell state Ct needs to be represented with higher precision, because any 
error on this variable will be accumulated due to the feedback path. The 
stochastic rate coding provides convenience in implementing 
multiplication as it requires only an AND function, however, it 
introduces not only rounding error but also random error due to 
stochastic sampling. Previous work shows that the spike burst code, 
where the numerical value is represented by the number of spikes that 
burst in a window, has much higher correlation with the numerical 
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Figure 3. (a) LSTM color coded based on operation phase 
(b) LSTM equations color coded to represent operations in spe-

cific phases (c) 3 phases and partial pipelining 



value to be represented [17]. Therefore, we encode Ct using spike burst 
code and use spike-burst neurons for the sum function.  

D. Spike-based LSTM Constituent Modules 

Figure 1(a) shows a general LSTM unit consisting of the sigmoid 
gates, hyperbolic tangent, dot products and sum. To implement a Spike-
based LSTM (S-LSTM), we approximate these modules using spiking 
neurons. On TrueNorth, these modules are in the form of corelets, 
which will be further connected to form the full S-LSTM. The corelets 
will be mapped across cores based on the consideration of the fan-in 
and fan-out constraints of the hardware.  

1) Store-and-Release neurons 
Store and release mechanism is implemented using a neuron with 

a high negative threshold where it saturates. The store and release 
clocks are two inputs associated with large negative and positive 
weights respectively. A spike on the store clock pushes the membrane 
potential to the negative threshold and turns on the store mode, during 
which the neuron accumulates the input spikes and raises its membrane 
potential. The negative initial state guarantees that the raised membrane 
potential is still below the firing threshold, therefore, no output spikes 
are generated. A spike on the release clock pushes the membrane 
potential to 0 or higher if input spikes are received during the store 
model, and the neuron starts generating output spikes.  

A problem with the above scheme is that the neuron cannot collect 
negative spikes at the beginning of the store mode as its membrane 
potential cannot go below the negative threshold. So, upon entering the 
store mode, we send a spike on the release clock, to pre-charge the 
membrane potential to an intermediate level between the negative 
threshold and 0 to allow collecting negative spikes. We refer to this 
spike signal as pre-charge clock. Figure 4 shows an example where the 
neuron enters the store mode through a negative potential of -250 and 
enters release mode through two positive potentials of +100 
administered by the store (red), pre-charge (yellow) and release (blue) 
clock spikes respectively. Figure 5 shows all the clock signals in the S-
LSTM. 

At the beginning of the release phase, the neuron membrane 
potential (AMP) equals to the total number of net input spikes that it 
collected during the store mode. The ܴܸ݈ܲܽ݁ݑ stored in the neuron can 
be calculated as ܴܸ݈ܲܽ݁ݑ ൌ ܲܯܣ ݊ܵ⁄ . To generate the output spikes, 
a random number is drawn in the range [0, RThR], where RThR is the 
firing threshold. If this number is less than the AMP, then an output 
spike is generated. During a phase PL, the expected number of spikes 
generated in this way is ܲܮ ൈ ܲܯܣ ܴ݄ܴܶ⁄ . When we set RThR to PL, 
the number of the output spikes equals to the total number of net input 
spikes, and the neuron relays input to the output without any 
transformation. In the actual implementation, almost all store-and-
release neurons are merged to its subsequent sigmoid and tanh gate. 
ܴ݄ܴܶ  should be selected differently due to the squash and linear 
transformation of these functions. More details will be given in section 
III.D.3). 

2) Input Collection Module (IC Module) 
From the LSTM equations, we see that the weight matrices ܹ for 

each gate are multiplied by the input vector ݔ and the previous time-
step’s LSTM output vector ݄௧ିଵ respectively along with the biases. To 
implement this matrix-vector multiplication, we develop this 
parameterized module. As shown in Figure 6(d), each input and output 
is represented using two channels to accommodate both positive and 
negative values. We use 4 axons with assigned weights 1,2,4 and 8 to 
approximately represent weights from -15 to +15. The two-channel 
weight mapping with 4 axons is capable of approximating 5-bit 
precision weights instead of 4-bit precision [18]. The absolute weight 
is assigned to the positive or negative output channel based on the 
resultant sign of the product of input and axon weight. For example, if 
the input is negative and the weight is positive, the resultant product is 

negative. Thus, the absolute weight is assigned to the negative output 
channel. 

The above design results in positive and negative outputs in their 
respective channels. We use ReLU neurons for the output, which 
produces bursts of spikes equal to the accumulated membrane potential 
when threshold is 1. The two-channels (i.e. positive and negative) are 
used in every input of the sigmoid and tanh gates in the processing 
partition, which will then merge them to achieve the net results. 

This module is also parameterized to accommodate 
matrices/vectors [Wi, Wh, X, Y] of various sizes and the mapping scales 
across multiple cores depending on the sizes of those matrices/vectors. 

3) Gate Modules 
Piece-wise linear functions are computationally efficient [19] due 

to minimal cut points and linear interpolation between those cut points. 
These cut points and linearity are more conducive than a smooth non-
linearity to rate coding where the spiking rate determines the computed 
values. Spiking rates of these gate modules have definite max and min 
(0 and 1) and within this range the rate is linearly proportional to the 
number of input spikes or the accumulated membrane potential of a 
neuron. A steeper slope of the activation function reduces the linear 
range hence, limits the propagation of rounding errors. 

LSTM uses sigmoid gates to allow the flow of input, cell state and 
output, and uses tanh to squeeze the inputs and outputs to a range. 
Given the constrain-then-train approach, we develop modules which 
produce a hard sigmoid and a hard tanh behavior with store and release 
capability, and use them during both training and recall. In IC module, 
the matrix-vector multiplication produces two separate channels 
(positive and negative).  These spikes are collected in their respective 
gate modules to produce the net accumulated membrane potential 
 .during the store mode (ܲܯܣ)

During the release mode, spikes generated by the gate modules are 
rate-coded and the firing rates are linearly dependent on the ratio of 
total ܲܯܣ and ܴ݄ܴܶ.  

For the sigmoid, 

 

We approximate this as a piece-wise linear function with a steeper 
slope than used in [12] and TensorFlow [20] for a hard sigmoid. 

ሻݔሺߪ ൌ
1

1 ൅ ݁ି௫
 (1) 

ሻݔሺߪ ൌ maxሺ0,minሺ1, ݔ ∗ 1 ൅ 0.5ሻሻ (2) 

  
Figure 5. Store and release clock spikes for all gates  

  
Figure 4. Store-and-release mechanism  
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Here, ݔ	is the RPValue (ൌ  .accumulated from the input (ܵ݊/ܲܯܣ
 ሻ has a range [0, 1], which is represented by the firing rate of itsݔሺߪ
output spike. To represent (ݔ ∗ 1 ൅ 0.5ሻ, an offset of nS/2 is added to 
the AMP, so that the RPValue becomes ሺܲܯܣ ൅ 0.5݊ܵሻ ݊ܵ⁄ . To 
ensure that the resultant firing rate saturates to 0 and 1 at ݔ ൌ െ0.5 and 
ݔ ൌ 0.5 respectively, and be linearly proportional to the RPValue for 
െ0.5 ൏ ݔ ൏ 0.5, we set ܴ݄ܴܶ ൌ ݊ܵ.  

Similarly, for the hyperbolic tangent, 

We approximate this as a piece-wise linear function with a steep 
slope. We choose slope=2 such that ݔ saturates beyond	|0.5|. 

Again, ݔ 	is the ܴܸ݈ܲܽ݁ݑ  ( ൌ ܵ݊/ܲܯܣ ) and ݄݊ܽݐሺݔሻ  is the 
resultant firing rate with range ሾെ1,1ሿ. We approximate this using two 
output channels, for positive and negative ݔ. 

And we choose 	ܴ݄ܴܶ ൌ ݊ܵ/2 to reflect the scaling and get the 
behavior of a hard tanh in Eqn. (4). 

4) Dot Product Module 
As shown in Figure 6(c), the inputs of the dot product module are 

two-channeled inputs Ct, which is burst coded, and a rate-coded 
sigmoid. The function of the dot product is to help the gating functions, 
by allowing a certain percent of the information to flow through. 
Because the output of sigmoid function has numerical values between 
0 and 1 and is stochastically rate-coded, we explore the stochastic 

nature of the input and perform the multiplication by stochastic 
computing. A simple logical AND of the two spike streams is used as 
the multiplication.  

An example is given in Figure 7(c). In a window of 10 ticks, there 
are 5 spikes from the sigmoid, which represents ߪ ൌ 0.5, and 4 spikes 
in the in1, representing ݅݊1 ൌ 0.4. The logical AND produces 2 spikes 
at the output representing 1ݐݑ݋ ൌ 0.2. The logical AND operation can 
be easily realized using an integrate and fire neuron with threshold 2, 
by setting its input synapses weight and leak to be +1. 

E. Mapping Algorithm 

 As a single TrueNorth core consists of 256 neurons and axons, 
there is a distinct fan-in and fan-out constraint. To deal with this 
constraint and freely map LSTM networks of arbitrary sizes, we 
develop an incremental mapping algorithm. The mapping of IC module 
and other modules vary slightly as the IC module’s size is dependent 
on the number of LSTM units as well as the number of inputs whereas 
the sizes of other modules are only dependent on the number of LSTM 
units. Thus, IC modules are mapped and extended across two 
dimensions (axons and neurons) and the other modules are mapped and 
extended only across one dimension (axons). The mapping algorithms 
(Algorithm 1 and 2)  are straightforward and, due to the incremental 
nature, cores are added only when the resources of the current core fills 
up and so on for each module as shown in Figure 8. This results in 
number of cores increasing in steps of the number of LSTM units and 
average neuron density (number of neurons used per core) increasing 
within those steps. 

    
(a)                                       (b)                                             (c) 

Figure 7. (a) Approximated hard sigmoid (b) Approximated hard tanh 
(c) Dot product through logical AND of spikes 
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ሻݔሺ݄݊ܽݐ ൌ

݁ଶ௫ െ 1
݁ଶ௫ ൅ 1

 (3) 

Algorithm 1. IC Module Mapping Algorithm 
h = number of hidden units 
x = number of inputs  
function ExtendCores 
      addCore 
      numNeurons = 0 
      for I = 1 to h 
            add 2 neurons each for f, i, o, i_tanh 
            numNeurons +=8 
            if numNeurons>256 
 addCore 
 numNeurons = 0 

call ExtendCores 
numAxons = 0 
for i = 1 to (x+h) 
      add 8 axons (4 each for +ve and -ve) 
      make synaptic connections as per 4 axon scheme 
      numAxons += 8 
      if numAxons > 256 
            call ExtendCores 
           numAxons = 0

ሻݔሺ݄݊ܽݐ ൌ maxሺെ1,minሺ1, ݔ ∗ 2ሻሻ (4) 
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Figure 6. (a) Sigmoid module (b) Tanh module 
(c) Dot product module (d) IC module  

Algorithm 2. Sigmoid, Tanh, Dot product Mapping Algorithm 
h = number of hidden units 
addCore 
numAxons = 0 
for i = 1 to h 
      add a respective module with n axons 
      numAxons += n 
      if numAxons > 256 
            addCore 
           numAxons = 0 

ሻݔሺ݄݊ܽݐ ൌ ൜
				maxሺെ1,݉݅݊ሺ0, ݔ ∗ 2ሻሻ , ݔ ൏ 0
maxሺ0,minሺ1, ݔ ∗ 2ሻሻ , ݔ ൒ 0

 
(5) 

         
   (a)   (b) 

Figure 8(a) Algorithm 1 (b) Algorithm 2 in action  



IV.  EXPERIMENTS 

In the following experiments, we compare the Spike-based LSTM 
mapped on TrueNorth against the standard LSTM implemented using 
Keras with TensorFlow backend. For all experiments, the network is 
comprised of one hidden layer of LSTM units and are trained with 
weights constrained to the range -2 to 2. Spike-based LSTM is set to 
mx=5 and results are noted for various phase lengths. 

A. Parity check / XOR problem 

Parity check of a bit stream is a classic problem that is difficult to 
solve with a standard feed-forward network, but simple to solve with 
an RNN. In this problem, we have a sequence of binary inputs, and 
determine at each input whether the number of 1’s observed so far in 
the sequence is even or odd. Here we train LSTM with one hidden layer 
containing 2, 4 and 10 LSTM units on 9000 varying length binary 
sequences with maximum length of 20. Then it is tested with 1000 
sequences on TrueNorth with varying phase lengths. 

In Figure 9, we can see that the performance improves with the 
phase length as this increases the precision of activations. The accuracy 
also increases when the number of LSTM units is increased.  

B. Embedded Reber Grammar 

Embedded Reber grammar (ERG) is a popular RNN benchmark 
[2] used by many authors and is useful for training sequences with short 
time lags. Figure 10 (a) shows a Reber Grammar graph which is 
extended to an Embedded Reber Grammar in Figure 10 (b). An ERG 
sequence starts from the leftmost node ‘B’ of the ERG graph, and 
sequentially generates a finite number of symbols by following edges 
until the rightmost node ‘E’ is reached. At some nodes, there can be 
two possible paths. This choice is made randomly.  

Input and target patterns are represented by 7-dimensional binary 
vectors, representing one symbol each, in the training set. And the task 
is to read the symbols one at a time, and to continually predict the next 
possible symbol(s). Input vectors have exactly one nonzero component 
but the target vector could have one or two nonzero components 
representing one or two possible paths. The prediction is considered 
correct if it predicts either one or both possible symbols. Here we train 
LSTM networks with one hidden layer containing 10, 30 and 50 LSTM 
units on 5000 ERG sequences with maximum sequence length 36. We 
tested on 500 ERG sequences on TrueNorth with varying phase 
lengths. 

Again, the accuracy is directly correlated to the phase length such 
that as the accuracy drastically improves for precision higher than 
1/10	ሺ1	݁݇݅݌ݏ	 ൌ .ሻ݁ݑ݈ܽݒ	ܮܲ/ݔ݉	  The trend is noticeable in all 3 
network sizes as shown in Figure 11.  

The network using rate-coded internal cell state (S-LSTM-50RCt) 
instead of burst-coded one (S-LSTM-50) performs significantly worse. 
This, as mentioned in section C, is due to the accumulation of rounding 
error and additionally the sampling error while the spikes move from 
one buffer to another and then feeds back.  

When trained without any constraints, the range of learned weights 
varies. If that range is wide, it is hard to find a scaling factor that raises 
the smaller values to hardware supported range for less rounding error 
without making the larger values to overflow. So, we simply set the 
scaling factor sf to be 1. Compared to the networks trained with 
constraints, the rounding error of the unconstrained network is higher. 
However, setting ݂ݏ ൌ 1 leads to higher nS and better precision (i.e. 
lower 1/nS) than setting sf > 1. Therefore, the unconstrained network 
(S-LSTM-50NoC) produces better accuracy than the constrained 
network (S-LSTM-50) at lower PL, because it allows higher data 
precision. When the PL is high, the large window size already ensures 
reasonable data precision, so the constrained network performs better 
than the unconstrained version. 

Table 1 shows the results of 50-unit LSTM network and the 
respective TrueNorth implementations with 200 (high accuracy) phase 
lengths. It shows that although time to process a sample is much less 
for NVIDIA Tegra X1 (20nm technology) and NVIDIA Titan X (16nm 
technology), the TrueNorth networks (running at normal operating 
frequency 1 kHz) is more energy efficient. It consumes only 56 µJ at 
0.8V for 200 PL per sample making it up to 84x and 416x energy 
efficient than Tegra X1 and Titan X respectively. At faster than real 
time operation (3.5 kHz operating frequency) at the same voltage level 
of 0.8V, TrueNorth performs even better with 165x and 817x higher 
energy efficiency compared to Tegra X1 and Titan X.  

          
(a)                                                     (b) 

Figure 10. (a) Reber Grammar (b) Embedded Reber Grammar 

  

  
Figure 12. Neuron density, number of cores and 

energy/sample for the 3 S-LSTM networks 
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Table 1. Power and performance on different platforms 

Network Devices 
Time/ 

Sample 
(ms) 

Active 
Power 

(W) 

Energy/ 
Sample 

(mJ) 

50-
LSTM 

NVIDIA Tegra X1 1.928 2.45 4.72 

NVIDIA Titan X 0.5 46.5 23.3 

50-
LSTM 
200-PL 

IBM TrueNorth 400 0.00014 0.056 

*IBM TrueNorth 114 0.00025 0.0285 

*running at faster than real time (3.5x faster) 

  
Figure 11. Accuracy vs Phase Length (PL) for Spike-based 
LSTM (Keras/Tensorflow counterparts have 100% for all 

cases). RCt=Rated coded Ct, NoC = No Constraints 
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Figure 9. Accuracy vs Phase Length for Spike-based LSTM 

(Keras/Tensorflow counterparts have 100% for all cases)  



The actual power consumption only for the resources utilized on 
TrueNorth chip is computed by measuring chip idle power which is 
leakage power Pleak and total power Ptotal with the network running [21]. 
Active power is Pactive = Ptotal - Pleak. The scaled leakage power for the 
cores utilized is Pleak= Pleak*#cores/4096. Therefore, the total power 
consumed for the utilized resources is Ptotal_s = Pactive + Pleak_s. For a 
given network the active power is directly proportional to the spiking 
activity however, the same network can be designed to be mapped 
utilizing different number of cores. To ensure minimum power 
consumption it is critical to pack as many neurons possible on to each 
core for minimizing Ptotal_s as, Pleak_s is the only free variable. Figure 12.  
shows the results of neuron packing density achieved by the proposed 
modular design of the Spike-based LSTM and the incremental mapping 
algorithms. We see that the neuron density is increasing as the number 
of LSTM unit increases for larger networks. It also shows the 
energy/sample for 50-S-LSTM, 200PL, 0.8V implementation. 

Table 1 also shows the TrueNorth implementation is slower than 
the GPU implementations. In practical deployment, this factor of time 
delay is unsuitable and it points to a large performance/energy tradeoff. 
This tradeoff is drastic mainly due to the inability to reliably train 
LSTM networks with very limited precision. Here, we chose 200 PL 
setup for comparison to ensure reasonable data precision when we use 
sf > 1 to get reasonably high accuracy. If we can deploy an LSTM net-
work trained with very limited precision, we can use sf = 1 without 
reducing the accuracy. And with that we can choose a much lower PL 
to get tolerable or even close to the GPU implementation delays with 
the same or even lower energy footprint as of now. Thus, minimizing 
the performance/energy tradeoff significantly.  

V. CONCLUSION 

The paper presents a Spike-based implementation of LSTM on the 
IBM TrueNorth Neurosynaptic Processor. A standard LSTM is divided 
into modules and separately approximated using spiking neurons. On 
TrueNorth, modules are in the form of corelets which are then 
combined, connected and mapped to form Spike-based LSTM 
networks and synchronized using a store-and-release mechanism. 
These networks are tested on two RNN benchmarks with promising 
accuracy results and high power efficiency.  
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