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Abstract—The recent breakthroughs of deep reinforcement
learning (DRL) technique in Alpha Go and playing Atari have
set a good example in handling large state and actions spaces of
complicated control problems. The DRL technique is comprised
of (i) an offline deep neural network (DNN) construction phase,
which derives the correlation between each state-action pair of
the system and its value function, and (ii) an online deep Q-
learning phase, which adaptively derives the optimal action and
updates value estimates.

In this paper, we first present the general DRL framework,
which can be widely utilized in many applications with different
optimization objectives. This is followed by the introduction of
three specific applications: the cloud computing resource alloca-
tion problem, the residential smart grid task scheduling prob-
lem, and building HVAC system optimal control problem. The
effectiveness of the DRL technique in these three cyber-physical
applications have been validated. Finally, this paper investigates
the stochastic computing-based hardware implementations of the
DRL framework, which consumes a significant improvement in
area efficiency and power consumption compared with binary-
based implementation counterparts.

Index Terms—Deep reinforcement learning, optimal control,
cyber-physical systems, stochastic computing.

I. INTRODUCTION

Reinforcement learning provides us a mathematical frame-
work for learning or deriving strategies or policies that map
situations (i.e., states) into actions with the goal of maximizing
an accumulative reward [1]. It has been widely applied for
solving problems in different fields, such as manufacturing,
finance sector, and robotic control systems. Along with the
resurgence of deep learning techniques, reinforcement learning
has now evolved towards deep reinforcement learning (DRL),
where deep neural networks (DNNs) are utilitzed in the policy-
deriving process [2], [3], [4]. With offline-constructed and
online-updated DNNs, DRL techniques demonstrate capabili-
ties in handling complicated problems with high-dimensional
state and action spaces and even enabling continuous action
spaces [5]. These features make DRL distinguished from
reinforcement learning. And recent breakthroughs in Alpha Go
[4] and playing Atari [2] indicate the great success of DRL.

One major application scenario of DRL is the embedded
computing environment, such as in unmanned aerial vehicles,
autonomous driving, robotics, wearable devices and mobile
computing systems. However, DNNs involved in the DRL

can be both compute and memory intensive. Therefore, it is
desirable to have dedicated hardware implementations (e.g.,
FPGA, ASIC) for DNNs in the DRL for the embedded com-
puting platforms, in order to utilize the distributed-computing
and parallelism of hardware resources for enhanced computing
speed, energy efficiency, and resiliency. Stochastic computing
(SC) [6], [7] as a low-cost substitute to the binary-based
computing radically simplifies the hardware implementation
of arithmetic units and has the potential to satisfy the low
power and small hardware footprint requirements of DNNs in
the embedded computing environment.

In this paper, we first present the general DRL framework,
which can be widely utilized in many applications with
different optimization objectives, such as resource allocation,
residential smart grid, embedded system power management,
and autonomous control. Followed by the introduction of
three applications of the DRL framework, one for the cloud
computing resource allocation problem, one for the residen-
tial smart grid user-end task scheduling problem and one
for building HVAC system. The cloud computing resource
allocation problem automatically and dynamically distributes
resources (virtual machines or tasks) to servers by establishing
efficient strategy. Through extensive experimental simulations
using Google cluster traces [8], the DRL framework for
cloud computing resource allocation achieves up to 54.1%
energy saving compared with the baseline approach. The
residential smart grid task scheduling problem determines
the task scheduling and resource allocation with the goal
of simultaneously maximizing the utilization of photovoltaic
(PV) power generation and minimizing user’s electricity cost.
Through extensive experimental simulations with realistic task
modelings, the DRL framework for residential smart grid task
scheduling achieves up to 22.77% total energy cost reduction
compared with the baseline algorithm. The building HVAC
system is designed for controlling a desired temperature within
each zone with the factors of current zone temperature and
outside environment disturbances. The proposed DRL control
algorithm can achieve 20%-70% cost reduction compared with
the rule-based baseline control strategy, while maintaining the
temperature violation rate below 1.0%.

Additionally, as mentioned above, this paper investigates
the stochatic computing (SC)-based hardware implementations
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of DNNs used in DRL using stochastic computing technique.
To further enhance the performance (computing speed) and
energy efficiency, pipelining techniques is employed in the SC-
based hardware design. The stochastic computing-based ultra-
low-power implementation consumes only 58771.53 µm2 area
and 7.73 mW power with 261.12 ns delay.

The rest of this paper is organized as as follows. Section
2 presents the related works on DRL. In Section 3, the
general DRL basics and framework are introduced. Section
4 introduces three representative applications of DRL, along
with simulation results. In the following Section 5, the hard-
ware implementation of DRL using the stochastic computing
technique is presented. The corresponding experimental results
are showed in Section 6. The conclusion of this paper is
presented in Section 7.

II. RELATED WORKS

A lot of research efforts have been made recently on the
development and applications of DRL. Mnih et al. are the
first introducing deep learning model into the reinforcement
learning and have succeeded in handling high-dimensional
sensory input when playing Atari [2].

In 2015, Mnih et al. further generalized DRL by developing
the first artificial agent, called deep Q-network (DQN), capable
of learning policies directly from high-dimensional sensory
inputs and agent-environment interactions [3], in which con-
volutional neural networks with hierarchical layers of tiled
convolutional filters were adopted. Lillicrap et al. proposed
an actor-critic, model-free algorithm based on the determin-
istic policy gradient. Combined with DQN, the actor-critic
approach can operate over continuous action spaces [5]. In
2016, Silver et al. combined supervised learning from games
of human experts and reinforcement learning from self-play
games to master the game of Go with DNN and tree search [4].
In [9] a specific adaptation to the DQN algorithm with double
Q-learning was proposed, which is able to reduce the observed
overestimations of the original DQN algorithm, and also lead
to much better performance on several games including the
Atari 2600 domain.

There are also extensive research works on enhancing
the performance and energy efficiency of hardware imple-
mentations of DNNs. In order to effectively implement the
deep convolutional neural networks onto embedded/portable
systems, Ren et al. developed the first comprehensive design
and optimization framework of stochastic computing-based
deep convolutional neural networks [10]. In order to handle
the challenges brought by stochastic computing including
random error fluctuation, range limitation, and overhead in
accumulation, Kim et al. adopted the approach of removing
near-zero weights, applying weight-scaling, and integrating
the activation function with the accumulator when designing
an efficient DNN with stochastic computing [11]. In [12], a
pipelined architecture was employed for a convolutional neural
network accelerator, with memristor crossbars dedicated for
each neural network layer and eDRAM data buffers between
pipeline stages. Ardakani et al. implemented the DNN using

integer stochastic stream which is a sequence of integer
numbers that are represented by either two’s complement
or sign-magnitude [13] to solve the precision loss issue of
conventional scaled adder, meanwhile reducing the latency.

III. DRL FRAMEWORK

Deep reinforcement learning shares the same basic con-
cepts with reinforcement learning in that it is also an agent-
environment interaction process. The learner and decision-
maker is called the agent. The thing it interacts with, com-
prising everyting outside the agent, is called the environment.
Specifically, the agent and environment interact at a sequence
of decision epochs. At a decision epoch, the agent receives
some representation of the environment’s state i.e., s, and on
that basis selects an action i.e., a. In part as a consequence of
its action, the agent receives a numerical reward and finds
itself in a new state of the environment i.e., s′. A policy,
denoted by π, of the agent is a mapping from each state to
an action that specifies the action a = π(s) that the agent will
choose when the environment is in state s. The ultimate goal
of an agent is to find the optimal policy, such that

V π(s) = E
[ ∞∑
k=0

γkr(k)
∣∣∣s] (1)

or
V π(s) = E

[ ∫ ∞
t0

e−β(t−t0)r(t)dt
∣∣s] (2)

is maximized for each state s, where r is the reward rate,
and γ and β are the discount rates. The value function V π(s)
is the expected return when the environment starts in state s
and follows policy π thereafter. Eqn. (1) is for a discrete-time
system, while Eqn. (2) is for a continuous-time system.

In order to derive the optimal policy, a Q value, denoted
by Q(s, a), is associated with each state-action pair (s, a),
which approximates the expected discounted cummulative
reward (i.e., the value function) of taking action a at state
s. The reinforcement learning algorithm has a convergence
time proportional to O(|A| · |S|), where |A| represents the
total number of actions and |S| represents the total number of
states. And its computation complexity is O(|A|+M) at each
decision epoch, in which M is the already known state-action
pairs kept in the memory. Therefore, reinforcement learning
becomes less effective when dealing with actual complicated
problems with high-dimensional state and action spaces.

To overcome the drawbacks of reinforcement learning, DRL
is comprised of an offline deep neural network (DNN) con-
struction phase and an online deep Q-learning phase showed in
Algorithm 1. In the offline phase, we construct a DNN, which
can infer for each state-action pair its Q value to be used
for the online phase. Sufficient training data is needed for the
offline DNN construction. In [14] a model-based procedure
is adopted to accumulate the training samples, while in [4]
training data is obtained from actual measurement. To obtain
the training data, we use an arbitrary but gradually refined
policy to simulate the control process. An experience memory
D with capacity ND is used to store the state transition



Algorithm 1: The General DRL Framework

1 Offline DNN construction:
33 Simulate the control process using an arbitrary but

gradually refined policy for enough long time;
55 Obtain the state transition profile and Q(s, a) value

estimates during the process simulation;
77 Store the state transition profile and Q(s, a) value

estimates in experience memory D with capacity ND;
99 Train a DNN with features (s, a) and outcomes Q(s, a);

10 Online deep Q-learning:
1212 foreach execution sequence do
1414 foreach decision epoch tk do
1616 With probability 1 - ε select the action

ak = argmaxaQ(sk, a), otherwise randomly
select an action;

1818 Execute the chosen action in the control system;
2020 Observe reward rk(sk, ak) during time period

[tk, tk+1) and the new state sk+1 at the next
decision epoch;

2222 Store transition set (sk, ak, rk, sk+1) in D;
2424 Update Q(sk, ak) based on rk and

maxa′Q(sk+1, a
′
) based on Q-learning

updating rule. One could use a duplicate DNN
Q̂ to achieve this goal;

2626 Update DNN weight set θ based on updated Q-value
estimates, in a mini-batch manner;

profiles and Q values while smoothing out learning to avoid
oscillations and divergence in the parameters [2]. Then, a DNN
with weight set θ can be trained using the state transition
profile and Q values.

In the online phase, deep Q-learning is adopted for action
selection (i.e., the ε-greedy policy) and Q value update.
Specifically, suppose at decision epoch tk, the system under
control is in state sk. The DRL agent enumerates all actions
and obtains the corresponing Q(sk, a) value estimates using
the offline-constructed DNN. According to the ε-greedy policy,
the agent selects the action resulting in the maximum Q(sk, a)
value estimate with probability 1 - ε, and selects a random
action with probability ε. After the selected action ak is taken,
the observed total reward rk(sk, ak) during [tk, tk+1) is used
for Q value update. In order to mitigate the potential oscillation
in the DNN inference results, we adopt the duplicate Q
method from [15], which maintains two Q value estimates for
each state-action pair and updates the two Q value estimates
interactively. At the end of an execution sequence of decision
epochs, the DNN is then updated using the lately observed Q
values in a mini-batch manner, and will be employed in the
next execution sequence.

From the above procedure, the DRL can now handle ex-
tremely large state space (even infinite continuous state space)
by using offline-trained and online-updated DNN. For the
action space, it should be kept within a reasonable size, due to
the necessity to enumerate the action space for action selection

at a decision epoch.

IV. REPRESENTATIVE APPLICATIONS OF DEEP
REINFORCEMENT LEARNING

A. DRL Framework for Cloud Computing Resource Allocation

In the cloud computing resource allocation problem, a server
cluster consists of M physical servers that can provide P types
of resources is considered. A first-come-first-served manner is
deployed to process assigned jobs for the servers. A job will
wait in the queue until sufficient resource is released in the
server. We define the latency of a job as the actual duration
from its arrival time to its complete time.

A server has two working modes: active and sleep for
energy saving. Ton is the time needed by a server to transit
from sleep mode to active mode. Toff is the time needed by a
server to transit from active mode to sleep mode when no job
is pending or running. All the mode transitions are considered
as uninterruptible. We assume the power consumption of a
server in the sleep mode is zero. Based on an empirical non-
linear model in [16], the power consumption of a server in
active mode is a function of CPU utilization as follows:

P (ut) = P (0%) + (P (100%)− P (0%))(2ut − u1.4t ) (3)

where ut denotes the CPU utilization of the server at time t.
In order to significantly reduce the action space, we adopt a

continuous-time and event-driven decision making mechanism
[17] in which each decision epoch coincides with the arrival
time of a new job. In the offline phase, we harness the
power of representation learning and weight sharing for DNN
construction. Specifically, we first employ an autoencoder to
extract a lower-dimensional high-level representation of server
group state for each possible server. The dimension difference
reflects the relative importance of the targeting server group
compared with other groups and results in reduction in the
state space. Next, for estimating the Q-value of the action of
allocating a job to servers in this group the neural network
Sub-Q takes the server group state, job’s state, all lower-
dimensional high-level representations, and actions as input
features. In addition, we introduce weight sharing among all
autoencoders, as well as all Sub-Q’s to reduce the total number
of parameters and the training time. For the online phase, at
the beginning of each decision epoch, the Q value estimates
are derived for each state-action pair by inference based on
the offline trained DNN. An action is then selected for the
current state using the ε-greedy policy. At the next decision
epoch, Q-value estimates are updated. After the execution of a
whole control procedure, the DNN is updated in a mini-batch
manner with the newly observed Q-value estimates.

In the simulation setup, we assume a homogeneous server
cluster without loss of generality. The idle power consumption
is P (0%) = 87W, and the peak power consumption is
P (100%) = 145W [16]. We set the server power mode
transition times Ton = 30s and Toff = 30s. Based on the
Google cluster traces [8], we simulate five different one-week
job traces into the proposed online deep Q-learning framework
and compare the average results against the baseline. Under



the circumstances of M = 20, 30 and 40, the proposed DRL-
based framework on average can achieve 20.3%, 47.4% and
54.1% of power consumption saving while the accumulated
latency only increases by 9.5%, 16.1% and 18.7%. The
proposed framework effectively generates policies to decrease
accumulated latency when the weight increases because of the
more evenly jobs distributing. All tested cases can achieve
at least 47.8% power consumption saving with only a slight
increase in job latency. These results prove that weights of the
reward function can take a effective control of the trade-off
between power, latency, and resiliency.

B. Residential Smart Grid Task Scheduling

The present research focuses on task scheduling of residen-
tial appliance operations to minimize an individual electricity
user’s cost in the Smart Grid factoring in photovoltaic (PV)
power generation, due to the worldwide trend of transition
to the Smart Grid and PV power usage in residential, indus-
trial, and commercial sectors. In this work, we reduce users’
electricity cost by applying the deep reinforcement learning
framework for the user-end task scheduling in the Smart Grid
equipped with distributed PV power generation devices under
dynamic pricing.

We employ a slotted time model i.e., the task scheduling
frame (one day) is divided into T = 24 time slots each
with duration of one hour. The tasks are non-interruptible,
i.e., tasks need to be operated in continuous time slots. An
inconvenience price is determined by the user to represent
the penalty when scheduling task outside its desired operating
window. We assume that the residential user is equipped with a
distributed PV system. The power generation of the PV system
in time slot t is denoted by Ppv(t). The power provided from
the grid in time slot t is denoted as Pgrid(t), which depends
on Ppv(t) and Pload(t) according to the following:

Pgrid(t) =

{
0, when Ppv(t) ≥ Pload(t)
Pload(t)− Ppv(t), otherwise

(4)
We consider a dynamic price model C(t, Pgrid(t)) consisting
of a time-of-use (TOU) price component and a power con-
sumption price component.

We simulate the control process using generated task sets
and following a preliminary control policy. The state transition
profile and Q(s, a) value estimates are obtained through the
simulation and used as the training data for offline DNN con-
struction. We construct a three-layer artificial neural network
with 26 hidden neurons, which is trained using the previously
obtained training data. In the online phase, for each decision
epoch k, according to the current system state sk, the action
resulting in the maximum Q(sk, a) estimate is selected using
the ε-greedy policy. And Q(sk, a) estimates are obtained by
performing inference on the offline-trained neural network.
Based on the selected actions and observed rewards, Q-value
estimates are updated before the next decision epoch. At the
end of one execution sequence, the neural network is updated
for use in the next execution sequence.

The PV power generation profiles are provide by [18],
which are measured at Duffield, VA, in 2007. We adopt an
approach using the negotiation-based task scheduling algo-
rithm [19] as our baseline system. We compare the total
electric cost for the residential smart grid user using the DRL
framework and the baseline algorithm on the following test
cases: 100, 300 and 500 tasks for scheduling. According to the
results, the DRL framework can schedule tasks to maximize
the coverage of the PV power and avoid the peak of TOU price
in a more effective manner compared to the baseline method.
Correspondingly, the DRL framework can achieve 22.77%,
12.54% and 12.45% total energy cost reductions when the
number of tasks are 100, 300, and 500, respectively.

C. DRL for Building HVAC Control

The building HVAC system should be operated to maintain
a desired temperature within each zone, based on current zone
temperature and outside environment disturbances (e.g., am-
bient temperature and solar irradiance). The zone temperature
at next time step is determined by the current system states,
the environment disturbances, and the conditioned air input
from the HVAC system. We have developed a DRL control
algorithm to intelligently determine the optimal conditioned air
flow input for each zone, for maintaining desired temperature
while minimizing the total energy cost of the building HVAC
system [20].

More specifically, we consider a building that is equipped
with a VAV (variable air flow volume) HVAC system to main-
tain desired temperature for z zones. The VAV terminal box
in each zone provides conditioned air (typically at a constant
temperature) with an air flow rate that can be chosen from
multiple discrete levels (denoted as F = {f1, f2, ..., fm}). At
each control time step, the optimal control action for each zone
is determined based on the observation of the current system
states, which include current physical time, zones’ temperature
in the building and environment disturbances (i.e. ambient
temperature and solar irradiance intensity). For environment
disturbances, we also take into account a multi-step forecast
of weather data in the system states. This enables our DRL
algorithm to capture the trend of the weather condition and
perform proactive control for time-variant systems.

We separately train a neural network for each zone by
following the DRL Algorithm 1. Each neural network is only
responsible for approximating the Q-value in one zone. At
each control time step, all neural networks will receive the
entire system states of buildings and then determine the control
action for each zone separately. This heuristic can greatly
improve the training efficiency by reducing the number of
output units in the neural network.

rit = −λ([T it − T
i

t]+ + [T it − T it ]+)−

cost(
∑
i

ait−1, st−1) ·
ait∑
i a
i
t−1

, ait−1 ∈ F (5)

During the training process, our DRL algorithm will try to
maximum the reward function (5) for each zone. The first term



measures the temperature violation in each zone, while the
second term heuristically estimates the energy consumption
cost contributed by each zone (which is assumed to be
proportional to the air flow demand in each zone based on
the total HVAC system energy cost in the building cost(·)).

To calculate the Q-value estimates, we adopt a similar neural
network structure as in [2]. Each output unit in the neural
network corresponds to the Q-value estimate of each available
control action. By using this structure, the Q-value estimates
for all control actions can be calculated by performing one
forward pass. We calculate the optimal Q-value for the action
in the current system state by following the Bellman Equa-
tion (6).

Q∗(st−1, at−1) = rt + γmax
at

Q(st, at) (6)

⇐ max[
rt
ρ

+ γmax
at

Q(st, at),−1] (7)

As shown in Equation (7), in practice we squash the original
target Q-value to the range [−1, 0] by first shrinking the
original reward with a factor ρ and then clipping it if the target
Q-value estimate is smaller than −1. This can help speedup the
training process by reducing the variance of Q-value estimates.

We train the DRL algorithms on two different weather
profiles in summer days. The first set of weather data has
intensive solar radiation and large variance in temperature,
while the second one has a milder weather profile. We calcu-
late buildings’ energy cost by using the practical time-of-use
price from the Southern California Edison, and demonstrate
the effectiveness of our DRL algorithm by comparing with
a rule-based HVAC control strategy (similarly as the one
in [21]) and the conventional RL method. We evaluate the
performance of our DRL algorithm with three building models,
which have 1 zone, 4 zones and 5 zones, respectively. Our
experiment results show that our DRL control algorithm is
superior to the conventional RL method and is able to achieve
20% − 70% cost reduction compared with the rule-based
baseline control strategy, while maintaining the temperature
violation rate below 1.0% [20].

V. SC-BASED DRL IMPLEMENTATION

Compared with conventional implementations in CMOS cir-
cuits, stochastic computing (SC) enables low-power and small-
hardware-footprint implementations of arithmetic units using
standard logic elements [22]. The SC paradigm significantly
simplifies the hardware implementation and thereby allowing
very high clock rates. In addition, it can provide a high degree
of fault tolerance and an opportunity for trade-off between
computating speed and accuracy even without changing the
hardware implementation.

In stochastic computing (SC), bit-streams are used for
representing numbers. First, the occurance rate of 1’s i.e.,
P (X = 1) in a bit-stream is calculated. Next, according to
unipolar encoding the number x presented by the bit-stream
is just x = P (X = 1), or according to bipolar encoding the
number x presented by the bit-stream is x = 2P (X = 1)− 1
[23]. A bit-stream can represnt a number in the range of

Fig. 1: SC arithmetic units used in this work. (a) XNOR
gate-based mulipication unit, (b) APC-based addition unit
performing addition of 30 bit-streams, and (c) K-state FSM-
based activation unit.

[0, 1] in unipolar encoding or [−1, 1] in bipolar encoding.
For representing a number beyond the range, a pre-scaling
operation [24] is needed. In this paper, we choose bipolar
encoding to cover both negtive and positive numbers in DNN
related calculations. For instance, a bit-stream 1101001011
represents the number 0.2.

A. SC Arithmetic Units

The major arithmetic operations in DNNs are multiplication,
addition, and activation function. These operations can be
implemented with extremely small arithmetic units as follows.

Multiplication Unit: The multiplication of two numbers
represented by bit-streams (in bipolar encoding) can be cal-
culated as logic XNOR operation of the two bit-streams, as
shown in Figure 1 (a). A brief derivation can be a × b =
[2P (A = 1) − 1] × [2P (B = 1) − 1] = 2P (A = 1)P (B =
1) + 2P (A = 0)P (B = 0) − 1 = 2P (A = 1) � P (B =
1) − 1 = 2P (Z = 1) − 1 = z. Regardless of the length of
bit-streams (i.e., precision), the multiplication unit is simply
an XNOR gate with two 1-bit inputs and one 1-bit output [7].

Addition Unit: The addition of n numbers can be per-
formed as logic OR operation of the n bit-streams, or by
an n-to-1 multiplexer where n inputs take the bit-streams
respectively and the output bit-stream equals to 1/n of the
sum, or by an approximate parallel counter (APC) [25], as
shown in Figure 2, where each of the inputs is a bit-stream.
The APC counts the number of ones from its n inputs, that is to

http://arxiv.org/abs/bit-stream/1101001


Fig. 2: Addition units: (a) OR gate, (b) MUX, and (c) APC.

TABLE I: Inaccuracy rates of the improved and orginal APC
designs.

APC
Bit Stream Length

256 512 1024
26-input 2.56% 2.12% 1.71%

30-input 2.34% 2.03% 1.56%

26-input improved 0.63% 0.61% 0.57%

30-input improved 0.61% 0.58% 0.55%

say, it adds the i-th bit of each of the bit-streams into a log n-
bit binary number with the value approximately equivalent to
the sum. In summary, OR gate is the most area efficient but
the accuracy is too low, MUX is area efficient with limited
accuracy, and APC achieves the highest accuracy at the cost
of a larger footprint. We adopt APC for addition considering
accuracy, power consumption, and footprint according to [10].

An APC employs two parts, an approximate unit (AU), con-
sisting of AND and OR gates for accumulating approximation,
and an adder tree consisting of adders to calculate the binary
summation of all input bits, each coming from an input bit-
stream. We propose an improved APC design as shown in
Figure 1 (b), where the last pair of inputs are feeded to a half
adder directly instead of an AND or OR gate. For an APC
with 30 inputs as in Figure 1 (b), the output should be 5-
bit binary numbers. In order to further reduce the hardware
footprint, we employ inverse mirror full adders as proposed in
[25] for the adder tree in an APC. Inverse mirror full adders
are smaller and more responsive adders that output inverse
logic of true summation and carry-out bits. The internal results
in the even layers correspond to the number of ones in the
primary input, while the internal results in the odd layers
represent the number of zeros. We compare inaccuracy rates
of our improved APC design to those of the original APC. As
shown in Table I, our improved designs significantly reduce
inaccuracy rate to less than 0.7% and at the same time with
more than 40% reduction of gate count.

Activation Unit: The most popular activation functions
used for deep neural networks are sigmoid, tanh, and Rec-
tified Linear Unit (ReLU). In this work, we select tanh due
to its convenience for SC implementation and comparable
effectiveness as ReLU and sigmoid [26]. The tanh function
can be easily implemented with a K-state finite-state-machine
(FSM) in the SC domain with significantly reduced hardware
footprint compared to its conventional computing counterpart
[23]. Figure 1 (c) includes a K-state FSM design of the tanh
function in SC domain for use in the activation unit. It outputs

Fig. 3: Whole system diagram of the DRL implementation
including the SC-based hardware DNN and interface with the
software controller in an embedded processor.

a zero if the current state is on the left half of the states, and
a one otherwise. By this design, we have

Stanh(K,X) ∼= tanh(
K

2
x) (8)

where Stanh stands for the tanh function in SC domain.
The K value represents the precision of Stanh, and therefore
higher accuracy can be achieved with a larger K value. We
use a K value in the range of [−K2 x,

K
2 x] in our experiments.

Stanh(K,X) takes bit-streams as input, while inner products
calculated from an APC are in the binary format. Therefore,
we use a saturated up/down counter [11] to convert the binary
format input from APC to a bit-stream. The whole design of
the activation unit is shown in Figure 1 (c).

B. System Design

Figure 3 shows the whole system diagram of the proposed
DRL implementation for embedded computing platforms. It
consists of an SC-based hardware DNN, a software controller
in an embedded processor, and a B/S conversion block in
between, which converts data in binary format for software
controller to/from bit-streams for SC-based hardware DNN.
For the SC-based hardware DNN, the previously discussed SC
arithmetic units including multiplication units, addition units
and activation units are utilized to perform DNN calculations.
More specifically, the DNN consists of M layers, each with Ni
(1 ≤ i ≤ M) neurons. The inputs(xi) and its corresponding
weights(wi) are operated by the multiplication and addition
units. In order to insure the next layer’s input are within [-1,1]
range, the outputs are transformed by an activation function.

The software controller performs both online control for
each decision epoch and offline control for a sequence of
decision epochs. The offline control first constructs a DNN
using previously collected data and the resultant weights of
the DNN are sent to the hardware DNN as parameters for
online inference. The online control at each decision epoch k



Fig. 4: Deep pipelining technique in the SC-based hardware
DNN.

performs action selection and Q value update, during which
state-action pairs (sk, a) for each action a are sent to the
hardware DNN for the calculation of Q values Q(sk, a) (i.e.,
DNN inference). Q values calculated from the hardware DNN
are then sent back to the software controller for use in action
selection and Q value update. After the online execution at a
sequence of decision epochs, the offline control takes charge
again to update DNN weights with training based on the newly
updated Q values.

C. Design Optimization

Different from [10], we use the “deep” pipelining technique
in the SC-based hardware DNN, where the pipeline stages
can be within the DNN layers, while in [10] only inter-
layer pipelining is considered. The clock rate of a pipelined
architecture is in general increased with deeper pipelining, but
is also clamped by the slowest pipeline stage. In order to
increase clock rate while balancing each pipeline stage, we
implement two pipeline stages within each DNN layer i.e.,
registers are inserted between addition units and activation
units as shown in Figure 4.

In conventional CMOS circuits performing binary comput-
ing, a higher data precision will slow down the clock rate.
However, in SC circuits the clock rate is now independent of
data precision. In SC, a higher data precision is achieved by
longer bit-streams, while the clock rate should be set to cover
the operations in each pipeline stage on just 1-bit of data.
To measure the performance of the SC pipelined architecture,
we define delay as the bit-stream length times the clock
cycle. In this way, the inverse of the delay is equivalent to
the throughput of the pipelined architecture of the SC-based
hardware DNN.

VI. EXPERIMENTAL RESULTS

This section demonstrates the effectiveness of our optimized
hardware implementation. We adopted one DRL network for
the residential smart grid with one 26-neuron input layer,
one 30-neuron hidden layer and one single-neuron output
layer to implement the hardware application. Therefore the
input layer is consisted of 30 XNOR gates for processing
the inputs and weight, 30 26-input APCs and Btanh as the
activation function. The hidden layer mainly includes a 30-
input APC. Converters between stochastic and binary numbers
are employed when processing the inputs and generating the
outputs. Table II presents the hardware implementation of the

TABLE II: Performance of Binary-based Hardware Implemen-
tation of the DRL Framework

Bit Size
Performance

Delay(ns) Power(mW ) Area(µm2)
8 7.60 63.31 1056958.13

16 10.53 217.79 1080106.41

32 14.76 880.25 3450187.80

TABLE III: Performance of Optimized Hardware Implemen-
tation of the DRL Framework

Bit Stream
Length

Performance
Optimization Delay(ns) Power(mW ) Area(µm2)

256 Pipelining 261.12 7.73 58771.53
Non-pipelining 412.47 6.30 57941.61

512 Pipelining 522.24 7.73 58820.74
Non-pipelining 824.63 6.30 57990.82

1024 Pipelining 1044.48 7.73 58919.16
Non-pipelining 1648.95 10.76 58089.24

fixed network using conventional binary computing with the
bit size ranging from 8 bits to 32 bits. It can be observed
that the SC-based implementation can achieve a much smaller
power and area cost compared with the binary-based hardware
implementations. Table III shows the result of our proposed
DRL hardware implementation based on SC with the impact
of pipelining. The bit stream length ranges from 256 to
1024. As showed in the table, the pipelined optimization
can significantly reduce the delay, i.e. increase the system
throughput, while maintaining small power and area cost.

VII. CONCLUSION

In this paper, we first present the general DRL frame-
work, which can be widely utilized in many applications
with different optimization objectives. This is followed by
the introduction of three specific applications: the cloud com-
puting resource allocation problem, the residential smart grid
task scheduling problem, and building HVAC system optimal
control problem. The effectiveness of the DRL technique in
these three cyber-physical applications have been validated.
Finally, this paper investigates the stochastic computing-based
hardware implementations of the DRL framework, which
consumes a significant improvement in area efficiency and
power consumption compared with binary-based implemen-
tation counterparts.
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