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ABSTRACT
Buildings account for nearly 40% of the total energy con-

sumption in the United States, about half of which is used by
the HVAC (heating, ventilation, and air conditioning) sys-
tem. Intelligent scheduling of building HVAC systems has
the potential to significantly reduce the energy cost. How-
ever, the traditional rule-based and model-based strategies
are often inefficient in practice, due to the complexity in
building thermal dynamics and heterogeneous environment
disturbances. In this work, we develop a data-driven ap-
proach that leverages the deep reinforcement learning (DRL)
technique, to intelligently learn the effective strategy for op-
erating the building HVAC systems. We evaluate the per-
formance of our DRL algorithm through simulations using
the widely-adopted EnergyPlus tool. Experiments demon-
strate that our DRL-based algorithm is more effective in
energy cost reduction compared with the traditional rule-
based approach, while maintaining the room temperature
within desired range.

1. INTRODUCTION
Buildings account for nearly 40% of the total energy con-

sumption in the United States and 70% of the electricity us-
age [23]. Among various types of building energy loads, such
as HVAC, lighting, appliances and electric vehicle charging,
the HVAC system consumes around 50% of the energy us-
age. The thermal flywheel effect allows the building oper-
ator to perform pre-cooling/per-heating to shift the HVAC
energy demand while still meeting the requirements on room
temperature [16]. As the energy usage in buildings is often
charged with time-of-use price (where energy prices vary in
different time periods), the scheduling flexibility from HVAC
system provides great potential for reducing building energy
cost and improving grid energy efficiency and stability.

In the literature, many approaches have been proposed
to control building HVAC systems for energy efficiency [15,
11, 10, 25]. These approaches typically employ a simpli-
fied building thermal dynamics model during runtime con-
trol to predict buildings’ temperature evolution. In [10],
the authors develop a nonlinear model of the overall cooling
system, including chillers, cooling towers and thermal stor-
age banks, and present a model predictive control (MPC)
scheme for minimizing energy consumption. In [15], the
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authors propose a system model that is bilinear in inputs,
states and weather parameters, and model the control opti-
mization as a sequential linear programming (SLP) problem.
The work in [11] models building thermal behavior as RC
networks and proposes a tracking linear-quadratic regulator
(LQR) for HVAC control. The work in [25] uses the similar
building model as [11], and develops an MPC-based algo-
rithm for co-scheduling HVAC control with other demands
and supplies. The performance and reliability of these ap-
proaches depend highly on the accuracy of the building ther-
mal dynamics model, which also has to be efficiently solved
using mathematical tools for practical runtime control [27].
However, the building temperature is affected by many fac-
tors, including building structure and materials, surrounding
environment (e.g., ambient temperature, humidity, and solar
radiation intensity), and internal heat gains from occupants,
lighting systems and other equipment. As a result, the build-
ing temperature often exhibits randomized behaviors under
an incomplete modeling. Overall, it is often intractable to
develop a building dynamics model that is both accurate and
efficient enough for effective runtime HVAC control.

Therefore, some recent works have started developing data-
driven approaches that leverage real-time data inputs for
reinforcement learning (RL) based HVAC control. In [1, 9,
14], classical Q-learning techniques are presented, which use
the tabular Q value function and are not suitable for control
problems with large state space. In [6], the authors propose
a neural fitted RL method through the interaction with ten-
ants to determine the optimal temperature setting point.
This approach is only evaluated with single-zone buildings,
in which the heat transfer process is modeled by simple
form of differential equations. The work in [3] develops a
model-assisted batch RL approach, where randomized trees
are used to approximate the action value and decide sim-
ple on-off control strategies. These RL-based methods with
function approximation work for the continuous state situa-
tion. However, their batch update mechanism exhibits high
computational cost throughout the learning process.

The recently proposed deep reinforcement learning (DRL)
technique, which has been shown successful in playing Atari
and Go games [12, 19], emerges as a powerful data-driven
method for solving complex control problems. The DRL
technique can handle large state space by building a deep
neural network to relate the value estimates and associated
state-action pairs, thereby overcoming the shortcoming of
conventional RL. This paper is the first (to the best of au-
thors’ knowledge) to apply DRL technique for HVAC con-
trol. Our work achieves good performance and high scalabil-
ity by (1) formulating the HVAC operation as a Markov de-
cision process (MDP) 1, (2) developing a DRL-based control

1Our MDP formulation is general and can be time-variant
as well.



𝑄 Network

𝑄" Network

EnergyPlus
building model

(𝑠%&',𝑎%&',𝑠%)

Rewards

(𝑠%&',𝑎%&', 𝑟%, 𝑠%)

Experience replay
memory

Current state 𝑠%

𝜖-greedy exploration
& exploitation

Control action 𝑎%

Control loop

Mini-batch of transitions

𝒔

𝒂

𝒔/

𝒓

Future	rewards
𝛾max

>?
	𝑄"(𝑠/, 𝑎′)

Target Q value
𝑟 + 𝛾max

>?
	𝑄"(𝑠/, 𝑎′)

Current Q value
𝑄(𝑠, 𝑎)

Ac
tio

n 
va

lu
e 

er
ro

r

L

Learning loop

𝜕𝐿
𝜕𝑤

Add

Update parameters 𝑤

Copy

…

… …

...

…

…

… …

...

…

𝑟% = 𝑐𝑜𝑠𝑡 𝑎%&', 𝑠%&' + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑠%
Gradient	of	Loss

Store historical transitions

State transition

from sensing data

(Last state)

(Action)

(Next state)

(Reward)

Real building 
HVAC system

BCVTB

For offline training 
and validation

Building Environment

During operation

Figure 1: Our deep reinforcement learning (DRL) based framework for HVAC control and evaluation. The details of building
state transition are defined in Section 2. The details of DRL learning and control process are presented in Section 3.

framework and an efficient heuristic variant, and (3) facili-
tating algorithm training and evaluation with a co-simulation
framework. Figure 1 illustrates our DRL-based framework
for HVAC control and evaluation. During building oper-
ation, it learns an effective control policy based on sens-
ing data input, without relying on any thermal dynamics
model. For offline training and validation of the algorithm,
we leverage detailed building dynamics model built in the
widely-adopted EnergyPlus simulation tool [4]. Simulation
results demonstrate that the proposed framework is able to
significantly reduce the energy cost while meeting the room
temperature requirements. It should be noted that while
the detailed EnergyPlus models are highly accurate and suit-
able for offline training and validation, their high complexity
makes them unsuitable for real-time control.

In summary, the main contributions of our paper include:

• We formulate HVAC control operations as a Markov de-
cision process, with definitions of system state, control
action and reward function. These are the key concepts
in our data-driven HVAC control approach using DRL.

• We develop a DRL based algorithm for minimizing the
building energy cost while maintaining comfortable tem-
perature for building tenants. For higher scalability, we
further propose a heuristic variant for efficient control for
complex multiple-zone systems.

• We develop a co-simulation framework based on Ener-
gyPlus for offline training and validation of our DRL-
based algorithms, with real-world weather and time-of-
use pricing data. Our experiment results demonstrate
that the proposed DRL-based algorithms can achieve up
to 20%−70% energy cost reduction when compared with
a rule-based baseline control strategy.

The remainder of the paper is organized as follows. Sec-
tion 2 presents our MDP formulation for the HVAC control
operation. Section 3 presents our DRL-based HVAC control
algorithms. Section 4 shows the experimental results and
Section 5 concludes the paper.

2. MDP FORMULATION FOR DRL-BASED
BUILDING HVAC CONTROL

The building HVAC system is operated to maintain a de-
sired temperature within each zone, based on current tem-
perature and outside environment disturbances. The zone
temperature at next time step is only determined by the
current system state and environment disturbances, and the
conditioned air input from the HVAC system. It is indepen-
dent from the previous states of the building. Therefore, the
HVAC control operation can be treated as a Markov decision
process. Next, we formulate the key concepts in this process
to facilitate our DRL-based HVAC control algorithm.

Control actions: We consider a building that has z tem-
perature zones and is equipped with a VAV (variable air flow
volume) HVAC system. The VAV terminal box at each zone
provides conditioned air (typically at a constant tempera-
ture) with an air flow rate that can be chosen from multiple
discrete levels, denoted as F = {f1, f2, ..., fm}. Therefore,
the entire action space A = {A1,A2, ...,An} of the building
HVAC control includes all possible combinations of air flow
rate for every zone, i.e., n = mz. Clearly, the dimension
of action space will increase rapidly with larger number of
zones and air flow rate levels, which will then greatly increase
the training time and degrade the control performance. In
Section 3.3, we introduce a multi-level control heuristic for
multiple zones to combat this challenge.

System states: The optimal control action is determined
based on the observation of the current system state. In
this work, we consider current (physical) time, zone temper-
ature and environment disturbances (i.e. ambient temper-
ature and solar irradiance intensity) to determine the op-
timal control action. In particular, incorporating current
time information in the state enables the DRL algorithm to
adapt to time related activities, such as time-varying tem-
perature requirements, electricity price, occupant activities
and equipment operation in the building. For environment
disturbances, instead of just using current ambient tempera-



ture and solar irradiance, we also take into account of multi-
step forecast of weather data. This is important because
the weather pattern can vary significantly. Considering a
short sequence of weather forecast data enables our DRL
algorithm to capture the trend of the environment, perform
proactive control and adapt to time-variant systems.

Rewards function: The goal of the DRL algorithm is to
minimize the total energy cost while maintaining the tem-
perature of each zone within a desired range, by taking a
sequence of actions {a1, a2, . . . , at}, where at ∈ A. After
taking an action at−1 at state st−1, the building will evolve
into a new state st and the DRL algorithm will receive an
immediate reward rt, as calculated below in Equation (1).

rt = −cost(at−1, st−1)− λ
z∑

i=1

([T i
t − T

i
t]+ + [T i

t − T i
t ]+) (1)

which includes the energy cost of the last control action at−1

and the total penalty of temperature violation. We use neg-
ative rewards as our DRL algorithm will maximize the to-
tal reward. It should be noted that the goal of minimizing
energy cost contradicts the goal of maintaining desired tem-
perature, and the reward function tries to balance the two.

During the operation of HVAC systems, we want to max-
imize the accumulative reward R =

∑∞
i=1 γ

i−1rt+i, where
γ ∈ [0, 1] is a decay factor that controls the window length
when maximizing the reward. We use Q∗(st, at), i.e., the op-
timal value, to represent the maximum accumulative reward
we can obtain by taking action at in state st. Q∗(st, at) can
be calculated by Bellman Equation (2) in a recursive fashion.

Q∗(st, at) := E[rt+1 + γmax
at+1

Q∗(st+1, at+1)|st, at] (2)

The state transition in buildings is stochastic, because the
zone temperature is affected by various disturbances, which
cannot be accurately measured. In this work, we update the
value estimates by following the Q-learning [24] method, as
shown in Equation (3).

Qt+1(st,at) := Qt(st, at)

+ η(rt+1 + γmax
at+1

Qt(st+1, at+1)−Qt(st, at)) (3)

where η ∈ (0, 1] represents the learning rate of value es-
timates during the training process. Equation (3) should
converge to the optimal value Q∗(st, at) over time under the
MDP environment.

Building control sequence: Our DRL algorithm interacts
with the building environment during operation, or with the
EnergyPlus model via the BCVTB (a Ptolemy II platform
that enables co-simulation across different models [26]) in-
terface during offline training and validation.

As shown in Figure 2, we use a separate control step
∆tc = k∆ts to represent the control frequency of DRL al-
gorithm. Every ∆tc time, as shown in Equation (4), the
DRL algorithm will observe the building state and update
the control action. Between two control time steps, the con-
trol action used to operate the HVAC system remains the
same as the last updated action. While in Equation (5), the
building receives the control signal and enters its next state
every ∆ts time, which represents the building simulation or
sensor sampling frequency.

at = fDRL(st−∆ts) (4)

st = fENV (st−∆ts , at−∆ts) (5)
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Figure 2: Building control sequence with DRL algorithm

3. DRL-BASED HVAC CONTROL

3.1 Value Function Approximation
The combination of possible values of each feature in the

state vector forms a very large state space. In practice,
it is more efficient to use generalization methods, such as
randomized trees [5], kernel-based method [17] and neural
networks [18] to approximate the Q-value. In this work,
we use the artificial neural network to approximate the Q-
value calculated by Equation (3). As shown in Figure 3, we
adopt a similar neural network structure as in [12]. With this
structure, the Q-value estimates for all control actions can
be calculated by performing one forward pass (inference) in
the neural network. This can greatly improve the efficiency
when selecting actions with the ε-greedy policy. The input
features of the network are the environment state that is
defined in Section 2. The rectified linear unit (ReLU) is
used as the activation function for hidden layers, and the
linear layer is used for inferring action value at the output.
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Figure 3: Structure of the neural network utilized in our
DRL framework

We use the mean squared error between the target Q-
value and the inferred output of neural network as loss func-
tion (6), where n denotes the number of possible control
actions. Parameters (weights) in the neural network are
updated by the mini-batch gradient descent method w :=
w − α∆w [2], where α is the learning rate and ∆w = ∂L

∂w
.

L =
1

2n

n∑
i=1

[Q∗(st, a
i
t)−Q(st, a

i
t)]

2 (6)

Being consistent with the Q-learning update process (3),
the target value Q∗(st, ait) in the neural network can be esti-
mated by Equation (7) when using gradient descent, where
Q values are approximated by the neural network.

Q∗(st, at) = rt+1 + γmax
at+1

Q(st+1, at+1) (7)



Training data pre-processing: The input state vector st
consists of various types of features in the building. The
range of value for each feature can vary significantly. To
facilitate the learning process, we scale the feature values to
a similar range before feeding the input state to the neural
network. In this work, we scale the input state vector to
the range [0, 1] as shown in (8), where x represents a feature
in the input state. The minimum and maximum values for
each feature can be estimated from historical observations.

x′ =
x−min(x)

max(x)−min(x)
(8)

For output units, the linear layer is used to infer Q-value esti-
mates from hidden units. However, if we directly use reward
function (1) to calculate the target Q-value as shown in (7),
it may result in a large variance in the target value. Dur-
ing backward propagation, the corresponding bias factor in
the last linear layer may dominate the derivative of the loss
function, which will prevent weights in earlier layers from
learning the optimal value. In order to overcome this lim-
itation, we calculate the target value by first shrinking the
original immediate reward with a factor ρ and then clipping
it if the target is smaller than −1, as shown in Equation (9).

target val(st−1, at−1) = max[
rt
ρ

+ γmax
at

Q(st, at),−1] (9)

In this way, we squash the original target value with a large
variance to the range [−1, 0]. The underlying principle is
that while it does not help to know which control actions are
worse, we focus on which control actions are better.

Training of the neural network: As shown in Figure 1,
the one-step state transition process is represented by a tu-
ple (st−1, at−1, rt, st), which includes previous state, previ-
ous action, immediate reward and current state. The target
vector of the neural network can be calculated by Equa-
tion (10), where the target value associated with at−1, i.e.,
target val(st−1, at−1), is calculated by Equation (9). For
other control actions, the target value is set to the current
value estimate of that action.

target(st−1) =

{
target val(st−1, a) if a = at−1

Q(st−1, a) otherwise
(10)

Next, the target vector is compared with current inference
output of the neural network to calculate the approximation
error. Then, we use the RMSprop [8] method to update
parameters in the neural network.

3.2 DRL Algorithm Design
Our DRL-based HVAC control algorithm is presented in

Algorithm 1. The outer loop controls the number of training
episodes, while the inner loop performs HVAC control at
each simulation time step within one training episode.

Initial setup: During the learning process, the recent tran-
sition tuples (st−1, at−1, rt, st) are stored in the memory M ,
from which a mini-batch of samples will be generated for
neural network training. At the beginning, we first initialize
memory M as an empty set. Then, we initialize weights w
in the neural network similar as in [7]. As shown in Equa-
tion (7), updating neural network weights requires the target
value, which also depends on weights in the neural network.
To break this dependency loop between target value and
weights w, in line 3, a separate neural network Q̂ is created
for calculating the target value similar as in [12]. This net-

work Q̂ will be periodically updated by copying parameters

from the network Q during the learning process. In line 4,
the variable a stores the control action in the last step, and
spre and scur represent the building state in the previous
and current control time steps, respectively.

Algorithm 1 DRL-based HVAC Control Algorithm

1: Initialize memory M = [empty set]
2: Initialize neural network Q with parameters w
3: Copy neural network Q and store as Q̂(·|ŵ)
4: Initialize control action a, state spre and scur
5: for m := 1 to N do
6: Reset building environment to initial state
7: for ts := 0 to L do
8: if ts mod k == 0 then
9: scur ← current observation

10: r = reward(spre, a, scur)
11: M ← (spre, a, r, scur)
12: Draw mini-batch (s, a, r, s′)←M
13: Target vectors v ← target(s)
14: Train Q(·|w) with s, v

15: Every d∆tc steps, Q̂(·|ŵ)← Q(·|w)
16: ε = max(ε−∆ε, εmin)

17: a =

{
Ai ∈ A | i = random(n) probability ε
argmax

ã
Q(scur, ã) otherwise

18: spre ← scur

19: end if
20: Execute action a in building environment

21: end for
22: end for

Learning process: Within each training episode, line 8
determines whether the current time step ts is a control
time step. As discussed in Section 2, the control step ∆tc
is k times of the simulation step ∆ts. If ts is a control time
step, the algorithm will perform training and determine the
new control action (line 9 to 18). Otherwise, the building
will maintain the current control action.

During the learning process, in line 9 we first observe the
state at current control time step. Then, the immediate re-
ward is calculated by Equation (1). Next, in line 11 the state
transition tuple is stored in memory. Then, a mini-batch
of transition tuples are drawn randomly from the memory.
Lines 13 to 14 follow Equation (10) to calculate the target
vector and update weights in neural network Q by using the
RMSprop Back-propagation method [8]. In line 15, the net-

work Q̂ will be updated with current weights in network Q
in every d control time steps. Then, this Q̂ network is used
for inferring the target value for the next d control steps.

Next, from line 16 to 18 the network Q is utilized to de-
termine the next control action. The ε-greedy policy is used
to select the optimal control action based on the output of
Q. The algorithm has a probability ε to explore the action
space by randomly selecting an available action; otherwise,
it will choose the action with the maximum value estimate.
After each training process, in line 16 the exploration rate ε
will gradually decrease until reaching at a lower bound εmin.
In this way, the DRL algorithm is more likely to try differ-
ent control actions at the beginning. As the training process
proceeds, the DRL algorithm will have a higher chance to
follow the learned policy. Finally, in line 18 the current state
is assigned to spre to prepare for the next training process.



3.3 Heuristic Adaption for Multiple Zones
We present a heuristic mechanism that adapts our DRL

algorithm for multi-zone HVAC control. As discussed in Sec-
tion 2, the action space has a cardinality of mz, which in-
creases exponentially with the number of zones in the build-
ing. Training a neural network with such a large number of
outputs is inefficient or even infeasible in practice.

In our heuristic, instead of using a single neural network
to approximate the Q-values of all control actions in the
building, we separately train a neural network for each zone
using Algorithm 1. Each neural network is responsible for
approximating the Q-value in one zone. At each time step,
all networks will receive the state of buildings, and then de-
termine the control action for each zone separately. After ex-
ecuting the control action, the temperature violation penalty
for each zone is calculated similarly as Equation (1). The
electricity cost in each zone is calculated by Equation (11),
which is proportional to the air flow demand in each zone
based on the total cost.

costi = cost · ui∑
i ui

(11)

where cost denotes the total electricity cost in the building
and ui represents the air flow rate in each zone. Although
the total electricity cost is not exactly a linear function of the
air flow rate, we can still heuristically estimate the amount
of cost contributed by each zone by following Equation (11).

4. EXPERIMENTAL RESULTS

4.1 Experiment Setup
We demonstrate the effectiveness of our DRL-based al-

gorithms through simulations in EnergyPlus. We train the
DRL algorithms on weather profiles of summer days in two
areas, obtained from the National Solar Radiation Data
Base [13]. The weather data from Area 1 (Riverside) has
intensive solar radiation and large variance in temperature,
while Area 2 (Los Angeles) has a milder weather profile. We
use the practical time-of-use price from the Southern Califor-
nia Edison [20] to calculate buildings’ electricity cost. The
desired temperature range is between 19◦C and 24◦C based
on the ASHRAE standard [21]. There are 4 hidden layers in
the neural network. The network layout and other parame-
ters in our DRL algorithms are listed in Table 1. We train
our DRL algorithm using 100 episodes (months) of data. In
practice, the training process can be facilitated by building
accurate EnergyPlus models.

Table 1: Parameter settings in DRL Algorithms

∆ts 1 min ∆tc 15 min
k 15 d 48 ∗ 5

mini-batch 48 memory size 48 ∗ 31
η 0.99 α 0.003
ρ 1000 λ 100

εmin 0.1 N 100

T 19◦C T 24◦C
number of neurons 50, 100, 200, 400

We evaluate the performance of our DRL algorithms by
comparing them with a rule-based HVAC control strategy
(similarly as the one in [22]) and the conventional RL method.
In the rule-based approach, the HVAC system is operated by
an on-off control strategy such that if the zone temperature

exceeds the cooling setpoint (i.e. 24◦C in our experiment),
the room will be cooled at the maximum air flow rate. If
the temperature drops below certain threshold 2, the air flow
in the zone will be turned off. In our experiment, for both
baseline approaches and DRL algorithms, the conditioned
air temperature from the HVAC system is set to 10◦C.

4.2 Experiment Results
A. Effectiveness of DRL control algorithms in meet-
ing temperature requirements: We evaluate the perfor-
mance of our DRL algorithms with three buildings modeled
in EnergyPlus, which have 1 zone, 4 zones and 5 zones, re-
spectively. The HVAC system can provide multi-level air
flow rate for each zone. In this work, we test our DRL algo-
rithms with two-level (i.e. on-off control) and five-level air
flow control, where each level is evenly distributed between
the minimum and maximum air flow rate of the HVAC sys-
tem. Figure 4 shows the zone temperature in the 1-zone and
4-zone building in August, where our regular DRL algorithm
in Algorithm 1 performs on-off control to operate the HVAC
system. We can see that after training the DRL algorithm is
quite effective in maintaining the zone temperature within
the desired range.
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Figure 4: Effectiveness of our regular DRL algorithm in
maintaining comfort temperature

Figure 5 shows the average Q value of our regular DRL al-
gorithm throughout the learning process. At the beginning,
the Q value is very small due to the large penalty caused by
frequent temperature violations. The Q value will gradually
increase as the DRL algorithm learns the effective strategy
to maintain the zone temperature within the desired range.
Eventually, the Q value will stabilize when the DRL algo-
rithm learns the policy to avoid temperature violation and
minimize the electricity cost.
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Figure 5: Q value in 1-zone and 4-zone buildings

2We find out that setting it to 20◦C helps the rule-based
approach minimize temperature violation rate.



As discussed in Section 3.3, the action space will expo-
nentially increase with the number of zones. For the 5-zone
building, the total number of actions is more than 3000 with
5-level air flow rate control, which would be intractable for
our regular DRL algorithm. Therefore, we leverage the effi-
cient heuristic method in Section 3.3 to perform multi-level
control in multi-zone buildings. Figure 6 compares the av-
erage frequency of temperature violations of the baseline
strategy, conventional Q learning, our regular DRL algo-
rithm with on-off control, and the heuristic DRL algorithm
with 5-level control. We can see that the DRL algorithms
are able to keep the percentage of temperature violations at
a low level.

0.0% 

2.0% 

4.0% 

6.0% 

1-zone	Area	1 1-zone	Area	2 4-zone	Area	1 4-zone	Area	2 5-zone	Area	1 5-zone	Area	2

Baseline Q	learning DRL	regular	on-off DRL	heuristic	5-level

Figure 6: Comparison of temperature violation rate between
our DRL algorithm, baseline approach and Q learning

B. Effectiveness of DRL algorithms in energy cost
reduction: Figure 7 shows the comparison of average daily
electricity cost of our DRL control algorithms, conventional
Q learning and the baseline approach. The percentage of
cost reduction achieved by DRL algorithms compared with
the baseline approach is marked in the figure.
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Figure 7: Comparison of energy cost between our DRL al-
gorithms, baseline approach and Q learning

We can see that our regular DRL algorithm can achieve
significant energy cost reduction compared with the base-
line approach and conventional Q learning. The efficient
heuristic DRL can leverage multi-level control in multi-zone
buildings to achieve further reduction. Furthermore, the
DRL algorithms are more effective in reducing energy cost
for Area 2, since the learning process is more effective with a
milder weather profile. Compared with the 5-zone building,
the DRL algorithms achieve more reduction for 1-zone and
4-zone buildings. That is likely because the 5-zone building
is more sensitive to outside disturbances and hence more
challenging for the learning process.

5. CONCLUSIONS
This paper presents a deep reinforcement learning based

data-driven approach to control building HVAC systems.
A co-simulation framework based on EnergyPlus is devel-
oped for offline training and validation of the DRL-based ap-
proach. Experiments with detailed EnergyPlus models and
real weather and pricing data demonstrate that the DRL-
based algorithms (including the regular DRL algorithm and
a heuristic adaptation for efficient multi-zone control) are
able to significantly reduce energy cost while maintaining
the room temperature within desired range.
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