
Energy and Performance-Aware Task Scheduling in a Mobile Cloud Computing
Environment

Xue Lin, Yanzhi Wang, Qing Xie, Massoud Pedram
Department of Electrical Engineering

University of Southern California
Los Angeles, U.S.

{xuelin, yanzhiwa, xqing, pedram}@usc.edu

Abstract—Mobile cloud computing (MCC) offers significant
opportunities in performance enhancement and energy saving in
mobile, battery-powered devices. An application running on a
mobile device can be represented by a task graph. This work
investigates the problem of scheduling tasks (which belong to the
same or possibly different applications) in an MCC environment.
More precisely, the scheduling problem involves the following
steps: (i) determining the tasks to be offloaded on to the cloud,
(ii) mapping the remaining tasks onto (potentially heterogeneous)
cores in the mobile device, and (iii) scheduling all tasks on the
cores (for in-house tasks) or the wireless communication channels
(for offloaded tasks) such that the task-precedence requirements
and the application completion time constraint are satisfied while
the total energy dissipation in the mobile device is minimized. A
novel algorithm is presented, which starts from a minimal-delay
scheduling solution and subsequently performs energy reduction
by migrating tasks among the local cores or between the local
cores and the cloud. A linear-time rescheduling algorithm is
proposed for the task migration. Simulation results show that the
proposed algorithm can achieve a maximum energy reduction by
a factor of 3.1 compared with the baseline algorithm.

Keywords-mobile cloud computing (MCC); energy
minimization; hard deadline constraint; task scheduling

I. INTRODUCTION
Mobile devices e.g., smart-phones and tablet-PCs, have

become one of the major computing platforms nowadays.
Unfortunately, the increase in the volumetric/gravimetric
energy density of rechargeable batteries has been much slower
than the increase in the power demand of these devices (which
are equipped with increasing levels of advanced functionality),
thus, resulting in a short battery life in mobile devices and a
“power crisis” for the smart-phone technology development.
At the same time, mobile devices have relatively weak
computing resources compared to their “wall-powered”
counterparts due to the constraints of weight, size and power.

Cloud computing has been envisioned as the next-
generation computing paradigm because of the benefits that it
offers, including on-demand service, ubiquitous network
access, location independent resource pooling, and transference
of risk [1]. In the cloud computing paradigm, a service
provider owns and manages the computing and storage
resources, and users have access to these resources over the
Internet. With the help of wireless communication elements
such as 3G, Wi-Fi, and 4G, a newly emerging mobile cloud

computing (MCC) paradigm can shift the processing, memory,
and storage requirements from the resource-limited mobile
devices to the resource-unlimited cloud computing system
[2][3][4].

MCC has the potential of improving the performance of
mobile devices by (i) selectively offloading tasks of an
application (e.g., object/gesture recognition, image/video
editing, and natural language processing) on to the cloud and
(ii) carefully scheduling task executions on both the mobile
device and the cloud taking into account the task-precedence
requirements. This is mainly because servers in the cloud have
much larger computation capability and higher speed than the
mobile processor. Moreover, MCC helps save energy in mobile
devices and prolong the battery operation time by offloading
executions of computation-intensive tasks onto the cloud.
Experiments conducted in [5] demonstrate that (i) a large
application can be partitioned into various tasks with task-
precedence requirements, and (ii) the fine granularity of task-
level offloading can potentially achieve both energy saving and
performance improvement.

Task scheduling on limited computing resources and task
offloading on to the cloud have been extensively studied and
various heuristic algorithms proposed in [6]~[12]. These works
are classified into two categories: (i) minimizing the overall
application completion time (achieving higher performance)
[6][7][8] and (ii) minimizing the total energy consumption
(achieving longer battery life in battery-powered mobile
devices) [9][10][11][12]. The HEFT algorithm in [6] was
proposed for scheduling tasks of an application with task-
precedence requirements on heterogeneous processors with the
objective of achieving high performance. This algorithm
computes priorities of all tasks, selects a task with the highest
priority value at each step, and assigns the selected task to the
processor that minimizes the task’s finish time. Ra et al. [7]
adopted an incremental greedy strategy and developed a
runtime system which is able to adaptively make offloading
and parallel execution decisions for mobile interactive
perceptual applications in order to minimize the completion
time of applications. A genetic algorithm was proposed in [8]
to optimize the partitioning of tasks of a data stream
application between a mobile device and the cloud for the
maximum throughput.

Reference [9] addressed the problem of minimizing energy
consumption of a computer system performing periodic tasks,
assuming that the periods of tasks are large enough such that

2014 IEEE International Conference on Cloud Computing

978-1-4799-5063-8/14 $31.00 © 2014 IEEE

DOI 10.1109/CLOUD.2014.35

192

2014 IEEE International Conference on Cloud Computing

978-1-4799-5063-8/14 $31.00 © 2014 IEEE

DOI 10.1109/CLOUD.2014.35

192

3

1 , 1

1

� =
�

≤ ≤ =�
� =�

s
i
c

i
r

i

T

i N T
T

Figure 1. An example task graph.

the positive slack time between tasks can be used for energy
consumption reduction. Reference [10] formulated the task
mapping problem as a maximum flow/minimum-cut problem
to optimize the partition of a task graph between a mobile
device and the cloud for the minimum energy consumption.
However, the authors did not consider the overall application
completion time and lacked a scheduling policy. Reference [11]
extended the work of [6] on heterogeneous processers
accounting for both the energy consumption and application
completion time. However, the algorithm in [11] cannot
guarantee that the scheduling result meets a hard constraint of
application completion time. Kumar and Lu proposed a
straightforward offloading decision strategy to minimize
energy consumption according to the computation-to-
communication ratio and the networking environment [12],
whereas a practical scheduling algorithm was omitted.

Although MCC brings great benefits in performance and
energy optimization for the mobile devices, it also gives rise to
significant challenge in terms of designing an optimal policy to
(i) determine the tasks of an application to be offloaded, (ii)
map the remaining tasks onto potentially heterogeneous cores
in a mobile device, and (iii) schedule tasks on the
heterogeneous cores (for in-house processing) and wireless
communication channels (for remote processing) such that the
task-precedence requirements and application completion time
constraint are satisfied with the minimum energy consumption
on the mobile device side. Notice that although the mobile
device cannot directly schedule tasks inside the cloud (this is
the job of the cloud computing controller), it can anticipate and
estimate the execution time of every task that has been
offloaded to the cloud based on its prior knowledge.

To differentiate the aforementioned problem from those
addressed in the previous work, we refer to it as the MCC task
scheduling problem. In particular, there are three key issues
that must be addressed.
• The application completion time constraint is a hard

constraint and therefore, it should be addressed in the first
place. Offloading computation-intensive tasks on to the
cloud may result in a decrease in the application completion
time. However, the offloading decision should be made
judiciously considering the delay due to
uploading/downloading data to/from the cloud.

• The total energy consumption in mobile devices, including
both the energy consumed by the processing units (the
potentially heterogeneous cores in the mobile device) and
by the RF components for offloading tasks is the objective
function to be minimized. From the perspective of energy
consumption, offloading tasks to the cloud saves the
computation energy but it induces energy consumption in
the communication units.

• The task-precedence requirements should be enforced
during the task scheduling. Unlike the conventional local
task scheduling problem in [6], there exist additional task-
precedence requirements between the cloud and the local
cores through wireless communication channels.
In this work, we present a novel algorithm to address the

MCC task scheduling problem to minimize the total energy
consumption of an application in a mobile device with access
to the computing resources on the cloud under a hard
application completion time constraint. In particular, we

generate a minimal-delay task scheduling in the first step, and
after that we perform energy reduction in the second step by
migrating tasks towards the cloud or other local cores that can
bring great energy reduction without violation of the
application completion time constraint. To avoid high time
complexity, we propose a linear-time rescheduling algorithm
for the task migrations. The simulation results show that the
proposed algorithm can achieve a maximum energy reduction
by a factor of 3.1 compared with the baseline algorithm.

To our best knowledge, this is the first task scheduling
work that minimizes energy consumption under a hard
completion time constraint for the task graph in the MCC
environment, taking into account the joint task scheduling on
the local cores and the wireless communication channels of the
mobile devices as well as on the cloud.

II. MCC TASK SCHEDULING SYSTEM MODEL

A. Applications
An application is represented by a directed acyclic task

graph � � ��� ��. Each node 	
 � � represents a task and a
directed edge ��	
� 	
� � � represents the precedence
constraint such that task (node) 	
 should complete its
execution before task (node) 	
 starts execution. There are a
total number of � tasks (nodes) in the task graph. Given a task
graph, the task without any parent is called the entry task, and
the task without any child is called the exit task. As shown in
Fig. 1, task 	� is the entry task and task 	�� is the exit task. For
each task 	
, we define ����
 and �����
 as the amount of task
specification and input data required to upload to the cloud and
the amount of data required to download from the cloud, if the
execution of task 	
 is offloaded onto the cloud.

B. MCC Environment
We consider a mobile device in the MCC environment that

has access to the computing resources on the cloud. There are a
number of � heterogeneous cores in the processor of the
mobile device. An example is the state-of-the-art big.LITTLE
architecture [13] that is adopted by Broadcom, Samsung, etc.
The operating frequency of the k-th core is �� and the (average)
power consumption �� is a super-linear function of �� ,
represented by �� � �� � ������ , where � � �� � . The ��
and �� values may be different for different cores.

A task can be executed either locally on a core of the
mobile device or remotely on the cloud. If task 	
 is offloaded

193193

on to the cloud, there are three phases in sequence associated
with the execution of the task 	
: (i) the RF sending phase, (ii)
the cloud computing phase, and (iii) the RF receiving phase. In
the RF sending phase, the specification and input data of task
	
 are sent to the cloud by the mobile device through the
wireless sending channel. In the cloud computing phase, task
	
 is executed in the cloud. In the RF receiving phase, the
mobile device receives the output data of the task 	
 from the
cloud through the wireless receiving channel. The cloud
transmits the output data of the task 	
 back to the mobile
device as long as it finishes processing the task 	
. We use !"
to denote the data sending rate of the wireless sending channel,
and !# to denote the data receiving rate of the wireless
receiving channel. Accordingly, let �" denote the power
consumption levels of the RF component in the mobile device
for sending data to the cloud.

The local core in the mobile device or the wireless sending
channel can only process or send one task at a time, and
preemption is not allowed in this framework. On the other hand,
the cloud can execute a large number of tasks in parallel as
long as there is no dependency among the tasks.

C. Task-Precedence Requirements in the MCC Environment
We use $
��% to denote the execution time of task 	
 on the

& -th core of the mobile device, where superscript l means
“local execution”. $
��% is inversely proportional to the operating
frequency �� . We use $
' to denote the computation time of
task 	
 on the cloud, where superscript c means “execution on
the cloud”. The time of sending task 	
 onto the cloud, denoted
by($
", is calculated by:

$

" � ����
)!". (1)

The time of receiving task 	
 from the cloud, denoted by $
#, is
calculated by:

$

� �����
)!# . (2)

For a task 	
 that is already scheduled (on a local core or
the cloud), we use *$
% , *$
+" , *$
' , and *$
+# to denote the
finish time of task 	
 on a local core, the wireless sending
channel (i.e., the task has been completely offloaded to cloud),
the cloud, and the wireless receiving channel (i.e., the mobile
device has completely received the output data of the task from
the cloud), respectively. If the task 	
 is scheduled locally,
*$

+" � *$

' � *$

+# � , ; otherwise (i.e., the task 	
 is
offloaded on to the cloud), we have *$
% � ,. Please note that
the mobile device can only schedule tasks in the local cores
and the wireless channels, whereas the cloud computing
controller schedules tasks that have already been uploaded
inside the cloud and transmits the output data back to the
mobile device. However, the mobile device can anticipate the
execution of tasks in the cloud and estimate the corresponding
*$

' and *$
+# values from the parameters $
', $
#, etc.
1) Local scheduling

Before we schedule a task 	
 , all its immediate
predecessors must have already been scheduled. Suppose that
task 	
 is to be scheduled on a local core. Then the ready time
of task 	
, denoted by !$
%, is calculated as:

!$

% � -./01�2345�06� -./(7*$

%� *$

+#8, (3)

where 2345�	
� is the set of immediate predecessors of the
task 	
 . The ready time !$
% is the earliest time when all
immediate predecessors of task 	
 have completed execution
and their results are available for task 	
:
• If task 	
 (an immediate predecessor of task 	
) has been

scheduled locally, -./9*$

%� *$

+#: � *$

%. In this case we

have !$
% ; *$

% , which means that task 	
 can start

execution on a local core only after the local execution of
task 	
 has finished.

• If task 	
 (an immediate predecessor of task 	
) has been
offloaded on to the cloud, -./9*$

%� *$

+#: � *$

+# . In
this case we have !$
% ; *$

+# , which means that task 	

can start execution on a local core only after the mobile
device has completely received the output data (results) of
task 	
 through the wireless receiving channel.

We can only schedule task 	
 to start execution at or after its
ready time !$
%, if the task has been scheduled on a local core.
In this way the task-precedence requirements can be preserved.
However, we might not be able to start executing task 	
 at
time !$
% exactly, because the cores may be executing other
tasks at that time.

2) Cloud scheduling
On the other hand, suppose that task 	
 is to be offloaded

on to the cloud. The ready time of task 	
 on the wireless
sending channel, denoted by !$
+", is calculated as:

!$

+" � -./

01�2345�06�
-./(7*$

%� *$

+"8< (4)

!$

+" denotes the earliest start time when the task 	
 can be

scheduled on the wireless sending channel in order to preserve
the task-precedence requirements:
• If task 	
 (an immediate predecessor of task 	
) has been

scheduled locally, -./9*$

%� *$

+": � *$

%. In this case we

have !$
+" ; *$

%, which means that the mobile device can

start to send task 	
 through the wireless channel only after
the local execution of task 	
 has finished.

• If task 	
 (an immediate predecessor of task 	
) has been
offloaded on to the cloud, -./9*$

%� *$

+": � *$

+". In this
case we have !$
+" ; *$

+", which means that the mobile
device can start to send task 	
 through the wireless channel
only after the mobile device has completed offloading task
	
 to the cloud.
The ready time of task 	
 on the cloud, denoted by !$
', is

calculated as:
!$

' � -./ 7*$

+"� -./

01�2345�06�
*$

'(8< (5)

!$

' denotes the earliest time when task 	
 can start execution

on the cloud. If task 	
 (an immediate predecessor of task 	
) is
scheduled locally, *$
' � ,. Therefore, -./01�2345�06� *$

'(in
(5) is the time when all the immediate predecessors of task 	

that are offloaded to the cloud have finished execution on the
cloud. On the other hand, *$
+" is the time when task 	
 has
been completely offloaded to the cloud through the wireless
sending channel, and therefore we have !$
' ; *$

+" . The
cloud computing controller can schedule task 	
 to start
execution at time !$
' exactly (because of the high parallelism

194194

Figure 2. Flow chart of the MCC task scheduling algorithm.

in the cloud), such that the task-precedence requirements can
be preserved.

Finally, let !$
+# denote the ready time for the cloud to
transmit back the results of task 	
, and we have:

!$

+# � *$

'< (6)
In other words, the cloud can transmit the output data (results)
of task 	
 back to the mobile device immediately after it has
finished processing this task.

D. Energy Consumption and Application Completion Time
If task 	
 is executed locally on the &-th core of the mobile

device, the energy consumption of the task is given by:
�
��
% � �� � ($
��

% < (7)
If task 	
 is offloaded to the cloud, the energy consumption of
the mobile device for offloading the task is given by:

�

' � �" � $

". (8)
The execution of task 	
 on the cloud does not consume energy
of the mobile device. The total energy consumption of the
mobile device for running the application, denoted by �=>=?%, is
given by

�=>=?% � @ �
A

B� . (9)

where �
 equals to �
��% if task 	
 is executed locally on the &-th
core of the mobile device, and equals to �
' if the task is
offloaded to the cloud.

The application completion time $=>=?% is calculated by:
$=>=?% � -./

06�CD
=(=?"�"
-./(7*$

%� *$

+#8< (10)

The inner -./ block gives the finish time of an exit task 	
. It
equals to *$
% if 	
 is executed on a local core, and equals to
*$

+# if 	
 is offloaded to the cloud.
The MCC task scheduling problem is to (i) determine the

tasks of an application to be offloaded, (ii) map the remaining
tasks onto the heterogeneous cores in a mobile device, and (iii)
schedule the tasks on the heterogeneous cores and wireless
communication channels. The objective is to minimize �=>=?%
under the following constraints: (i) task-precedence
requirements and (ii) the application completion time
constraint $=>=?% � $E?D , where $E?D is the maximum
application completion time.

III. MCC TASK SCHEDULING ALGORITHM
The MCC task scheduling algorithm has two steps: initial

scheduling for minimizing the application completion time
$=>=?% , and task migration for minimizing the energy

consumption �=>=?% under the application completion time
constraint $=>=?% � $E?D . The flow chart of the whole MCC
task scheduling algorithm is shown in Fig. 2.

In order to strictly satisfy the application completion time
constraint, we minimize $=>=?% in the first step and then reduce
energy consumption by moving tasks from a local core to
another or to the cloud in the second step. Otherwise, if we
minimize energy consumption at first, the application
completion time constraint can hardly be guaranteed when we
move a task from one core to another or to the cloud in the
subsequent step. This is because of the task-precedence
requirements and the parallelism constraints on the local cores
and the wireless communication channels.

A. Step One: Initial Scheduling Algorithm
In the initial scheduling algorithm, we generate the

minimal-delay scheduling without considering the energy
consumption of the mobile device. Reference [6] proposed the
HEFT algorithm, which generates the minimal-delay
scheduling for tasks running on a number of heterogeneous
cores. We modify the HEFT algorithm to take into account the
joint scheduling of tasks on the local cores, the wireless
communication channels, and the cloud. The initial scheduling
algorithm has three phases: primary assignment, task
prioritizing, and execution unit selection, as shown in Fig. 2. In
the following, we discuss the three phases in detail:

1) Primary assignment
In this phase, we determine the subset of tasks that are

initially assigned for the cloud execution. Offloading such
tasks to the cloud will result in savings of the application
completion time. Please note that this primary assignment is
not the final decision, since we can assign more tasks for
remote execution in the "execution unit selection" phase of
initial scheduling. For each task 	
, we calculate the minimum
local execution time $

%�E
F (on the fastest core) as:
$

%�E
F � -GH

�I�IJ
($
��

% (< (11)
We also calculate the estimated remote execution time $
#C as:

$

#C � $

" K ($

' K $

#< (12)
If $
#C L $

%�E
F, task 	
 is assigned for remote execution on the
cloud. We call such a task a “cloud task”.

2) Task prioritizing
In this phase, we calculate the priority of each task similar

to the HEFT algorithm. First, we calculate the computation
cost M
 for each task. If task 	
 is a cloud task, its computation
cost is given by

M
 � $

#C< (13)

If task 	
 is not a cloud task, M
 is calculated as the average
computation time of task 	
 in the local cores, i.e.,

M
 � .NO
�I�IJ

($
��
% (< (14)

Then the priority level of each task 	
 is recursively defined by
PQRSQR�T�	
� � M
 K -./01�UVWW�06� (PQRSQR�TX	
Y, (15)

where UVWW�	
� is the set of immediate successors of task 	
.
The priority levels are recursively computed by traversing the
task graph starting from the exit tasks. For the exit tasks, the
priority level is equal to

PQRSQR�T�	
� � M
 for 	
 � �ZR�(��[&[. (16)

195195

Figure 3. Task scheduling result by the initial scheduling algorithm.

Basically, PQRSQR�T�	
� is the length of the critical path from
task 	
 to the exit tasks.

3) Execution unit selection
In this phase, tasks are selected and scheduled in the

descending order of their priorities. If task 	
 is the immediate
predecessor of task 	
, we have PQRSQR�TX	
Y \ PQRSQR�T�	
�
from (15). Therefore, when task 	
 is selected for scheduling in
this phase, all its immediate predecessors have already been
scheduled.
• If the selected task 	
 is a cloud task, we calculate its ready

time !$
+" on the wireless channel, and allocate the earliest
available time slot on the wireless sending channel for
offloading the task. Please note that the mobile device
might not be able to start offloading task 	
 at time !$
+" if
it is offloading other tasks at that time. We calculate *$
+"
from the schedule, and then the cloud will begin executing
task 	
 at the ready time !$
' (because of the high
parallelism in the cloud.) Finally we calculate *$
' �
!$

' K $

' and *$
+# � *$

' K $

. In this way, we have

scheduled task 	
 and estimated the associated finish times.
• If the selected task 	
 is not a cloud task, it may be

scheduled on a local core or the cloud. We need to estimate
the finish time of this task if it is scheduled on each core
and the finish time of this task if it is offloaded to the cloud,
using the similar procedure as described above. Then we
schedule task 	
 on the core or offload it to the cloud such
that the finish time is minimized. When we schedule the
task, we need to make sure that the task-precedence
requirements are satisfied according to Section II.C.
Similar to the HEFT algorithm, the computation

complexity of the initial scheduling algorithm is]�� ^ �� ,
where � is the number of edges in the task graph �, and � is
the number of cores. We consider sparse task graphs (i.e.,
� �]��� where � is the number of tasks), and therefore the
complexity of initial scheduling becomes]�� ^ ��.

As an example, we perform initial task scheduling on the
task graph shown in Fig. 1, assuming that there are three
heterogeneous cores in the mobile device. The $
��% values are
shown in the table in Fig. 1, and we use $
" � , $
' � _, and
$

� _ for all the tasks. Fig. 3 presents the task scheduling

results, where the horizontal axes denote the time. For example,

task 	` is executed on core 1 from time 5 to 12. Task 	a is
offloaded on to the cloud. The mobile device sends the
specification and input data of task 	a using the wireless
sending channel from time 5 to 8. And then, task 	a is
computed on the cloud from time 8 to 9. The cloud transmits
the output data (results) of task 	a back to the mobile device
from time 9 to 10. The application completion time of this
example is 18, which is the finish time of the exit task 	��.

B. Step Two: Task Migration Algorithm
The task migration algorithm aims at minimizing the

energy consumption �=>=?% under the application completion
time constraint $=>=?% � $E?D . The energy consumption is
reduced through migrating tasks from a local core to another
local core or to the cloud. The task migration algorithm is an
iterative algorithm comprised of a kernel algorithm and an
outer loop. In each iteration, the outer loop determines the
target task for migration and the new execution location (i.e., a
different local core or the cloud) in order to minimize the
energy consumption �=>=?% . It should also maintain the
application time constraint $=>=?% � $E?D without violation.
Given the target task for migration and the new execution
location, the kernel algorithm generates a new scheduling
result that has the minimum application completion time $=>=?%
with linear time complexity.

1) Outer loop
The outer loop of the task migration algorithm determines

the target tasks to migrate from one local core to another local
core or to the cloud, in order to reduce the mobile device’s
energy consumption. It should also maintain the application
time constraint $=>=?% � $E?D without violation. Please note
that the task migration algorithm does not account for the
migration of a task from offloading to the cloud back to local
processing, because the energy consumption of the mobile
device will generally increase in this case.

In each iteration of the outer loop, let �b denote the number
of tasks that are currently scheduled on the local cores. Each of
them can be moved to execute on one of the other � c _ cores
or the cloud. Therefore, there are a total of �b ^ � migration
choices.
• For each choice, we run the kernel algorithm to find a new

schedule, and calculate the corresponding energy
consumption �=>=?% and application completion time $=>=?%.

• We select the choice that results in the largest energy
reduction compared with the current schedule and no
increase in the application completion time $=>=?% than the
current schedule.

• If we cannot find such a choice, we select the one that
results in the largest ratio of energy reduction to the
increase of the application completion time. We should
make sure that the new application completion time does
not exceed the limit value $E?D .

We repeat the previous steps until the energy consumption of
the mobile device cannot be further minimized.

2) Kernel algorithm (i.e., rescheduling algorithm)
In a task scheduling, let &
 denote the execution location of

task 	
. &
 d , means that task 	
 is executed on the &
-th core,
whereas &
 � , means that task 	
 is offloaded on to the cloud.
In the kernel algorithm, we have an original scheduling of the
task graph. We are given by the outer loop a task 	=?# for

196196

Figure 4. Task scheduling result by the MCC task scheduling algorithm.

migration and its new execution location &=?# . The kernel
algorithm should generate a new scheduling of the task graph
�, where task 	=?# is executed on the new location &=?# and the
remaining tasks are executed on the same locations as the
original scheduling. The kernel algorithm aims at minimizing
the application completion time $=>=?%. On the other hand, the
energy consumption �=>=?% is fixed and can be directly
calculated using (7)~(9) once the execution locations of tasks
are known. Because the kernel algorithm will be called many
times from the outer loop, we propose an efficient linear-time
rescheduling algorithm of the task graph as the kernel
algorithm, which is more efficient than the modified HEFT
algorithm when the number of cores is relatively large.

For the original scheduling, we use a sequence set e� �
7	������ 	���a�� f 8 to denote the sequence of tasks that are
executed on the &-th local core and we use the sequence set
e� � 7	������ 	���a�� f 8 to denote the sequence of tasks that are
offloaded to the cloud through the wireless sending channel.
For example, if we use the scheduling result in Fig. 3 as the
original scheduling, we have e� � 7	`8 , ea � 7	g� 	h8 ,
ei � 7	�� 	i� 	j� 	k� 	l� 	��8, and e� � 7	a8. Suppose that task
	=?# is executed on the &>#
-th core in the original scheduling.
We know from the outer loop that 	=?# will be moved on to the
&=?#-th core in the new scheduling. We should derive the new
sequence sets e�FC+ for , � & � �, which corresponds to the
sequence of tasks executed (or transmitted) on each core and
the wireless sending channel in the new scheduling. In the
linear-time rescheduling algorithm, we will not change the
ordering of tasks in the other cores except for the &=?#-th core
(because we are going to execute task 	=?# in this core), i.e.,

e�
FC+ � e�m	=?# for & � &>#
, (17)

and
e�
FC+ � e� for & d &=?# n & d &>#
 . (18)

In the following, we derive e�opq
FC+ by inserting 	=?# at a “proper”

location of the original schedule sequence e�opq . We need to
satisfy the following task-precedence requirements on the &=?#-
th core (&=?# � , means the wireless sending channel):
• For any two tasks 	
 and 	
 that are executed (or

transmitted) on the same core or wireless communication
channel, task 	
 must be executed (or transmitted) before 	

if 	
 is a transitive predecessor of 	
 in the task graph �.

Hence, we should insert 	=?# into e�opq such that 	=?# is
executed (or transmitted) after all its transitive predecessors
and before all its transitive successors. In order to achieve this
goal, we calculate the ready time !$=?# of task 	=?# in the
original scheduling. !$=?# equals to !$=?#% (calculated from (3))
when &=?# \ , and equals to !$=?#+" (calculated from (4)) when
&=?# � ,. In addition, we know the start time e$
 of each task
	
 in the original scheduling. Therefore, we derive e�opq

FC+ as:
e�opq
FC+ � 7	��opq���� f � 	��opq�E�� rst3� 	��opq�Eu��� f 8, (19)

where the start times of tasks 	��opq���� f � 	��opq�E� are earlier
than !$=?# and the start times of tasks 	��opq�Eu��� f are later
than !$=?# . In this way, it can be proved that the task-
precedence requirements on the &=?#-th core are preserved.

Now with the new sequence sets e�FC+ for , � & � �, we
are going to find a new schedule of the task graph in linear
time complexity]���. We maintain two vectors Q���T_ and

Q���T�. Q���T_
 is the number of immediate predecessors of
task 	
 that have not been scheduled. Q���T�
 � , if all the
tasks before task 	
 in the same sequence e�FC+ have already
been scheduled. In addition, we maintain a LIFO stack for
storing the tasks that are ready for scheduling. The stack is
initialized by pushing the task 	
’s with both Q���T_
 � , and
Q���T�
 � , into the empty stack. We repeat the following
steps until the stack becomes empty again. Then we have
scheduled all the tasks.
• Pop a task 	
 from the stack.
• Suppose that task 	
 � e�

FC+. If & � ,, we schedule the task
on the wireless sending, and calculate the time when the
mobile device completely receives the output data (results)
of task 	
 from the cloud. Otherwise, schedule the task on
the &-th core.

• Update vectors Q���T_ (reducing Q���T_
 by one for all
	
 � UVWW�	
�) and Q���T�, and push all the new tasks 	

with both Q���T_
 � , and Q���T�
 � , into the stack.

C. Computation Complexity of MCC Task Scheduling
Algorithm and an Example of Scheduling Result
The overall computation complexity of the MCC task

scheduling algorithm is]��i ^ ��, which is comparable to
the reference work on task scheduling. Fig. 4 presents the task
scheduling result by the MCC task scheduling algorithm for the
task graph in Fig. 1. The application completion time constraint
is set as $=>=?% � �v. Please note that Fig. 3 only presents the
result of the first step of the MCC task scheduling algorithm
(i.e., the initial scheduling algorithm), whereas Fig. 4 presents
the result of the entire MCC task scheduling algorithm.
Comparing Fig. 3 with Fig. 4, we observe that more tasks are
offloaded on to the cloud in Fig. 4 for reducing the energy
consumption. The application completion time in Fig. 4 is 26,
which is larger than that in Fig. 3. This is mainly due to the
limit on the transmission rate of the wireless sending channel.
The power consumption of core _w are set as �� � _, �a � �,
and �i � x . And the power consumption of the RF
components is set as �" � ,<y. In summary, we have �=>=?% �
_,,<y and $=>=?% � _z in Fig. 3, and we have �=>=?% � �v and
$=>=?% � �{ in Fig. 4. This result demonstrates that the task
migration algorithm (i.e., the second step of the MCC task

197197

scheduling algorithm) can significantly reduce the energy
consumption while satisfying the application completion time
constraint.

IV. EXPERIMENTAL RESULTS
In this section, we demonstrate the effectiveness of the

proposed MCC task scheduling algorithm on a set of randomly
generated task graphs. We compare the scheduling results of
the proposed algorithm to those of the baseline algorithms. All
the algorithms are implemented in MATLAB programs
executed in a 2.6 GHz Intel Core i7 processor.

We consider two baseline algorithms for comparison. The
baseline1 algorithm is described as follows:
1. Generate a random vector |, where |
 � 7,�_� f � &� f � �8

denotes the computing location of task 	
. If |
 � ,, task 	

will be offloaded on to the cloud. If |
 � &, task 	
 will be
executed on the &-th core in the mobile device.

2. Order and schedule task executions on each local core, the
cloud, and the wireless communication channels using the
modified initial scheduling algorithm. Different from the
initial scheduling algorithm described in Section III. A, in
the modified initial scheduling algorithm, the execution
location of each task is pre-defined by |. Calculated �=>=?%
and $=>=?%.

3. Repeat Step1~2 for 10,000 times to find the scheduling
with the minimum �=>=?% under the constraint that $=>=?% �
$E?D .

By comparing the proposed algorithm with the baseline1
algorithm, we will demonstrate the effectiveness and efficiency
of our proposed algorithm.

The baseline2 algorithm is the same as our proposed
algorithm except that it runs in the local mobile device
environment only (i.e., the mobile device does not have access
to the cloud and only the local resources can be used for task
executions.) By comparing the proposed algorithm with the
baseline2 algorithm, we will demonstrate that the MCC
framework shows great benefits in energy saving and
performance enhancement for the mobile devices.

A random task graph generator is implemented to generate
task graphs with various characteristics. Input parameters of
the task graph generator are given below.
• Number of tasks in the graph �.
• The density of edges in the graph }.
• Number of cores in the mobile device �.
• The average task computation time on a local core $%

?0~.

• The average task sending time $"
?0~.

• The average task receiving time $#
?0~.

• The average task computation time on the cloud $'
?0~.

A task graph can be generated with � and }. The $
��% values
are generated in the following way: (i) $
��% for _ � R � � are
generated with the average value of $%

?0~ , (ii) $
��u�% on the
(k+1)-st core is set around $
��%)� for _ � & � � c _, where �
is a factor. In addition, $
"/ $
'/$
for _ � R � � are generated
with the average value of $"

?0~/$'
?0~/$#

?0~.
Now we assume there are � � heterogeneous cores in

the mobile device. The core _ is a low-power core and the core
 is a high-performance core. The power consumption ��
values of the three cores are set as �� � _, �a � �, and �i � x.
The power consumption of the RF components is set as
�" � ,<y. Ten task graphs with different task numbers � and
different characteristics are generated for comparing the
proposed algorithm with baseline algorithms. Table I shows the
application completion time $=>=?% and the energy
consumption �=>=?% of the scheduling results from all the
algorithms. Table I also compares the program execution time
of the proposed algorithm and the baseline1 algorithm. We do
not compare the program execution time of the proposed
algorithm and the baseline2 algorithm, because they are similar
algorithms except that the baseline2 algorithm is designed for
the mobile devices without cloud access.

In Table I, we can see that both the proposed algorithm and
the baseline1 algorithm can guarantee the application
completion time constraint. The proposed algorithm achieves
less energy consumption than the baseline1 algorithm for task
graphs 2~9. However, for task graph 1, the proposed algorithm
generates a scheduling with a little bit more energy
consumption. This is because the task execution locations are
exhaustively searched in the baseline1 algorithm with a small
� value �� � __� , whereas such exhaustive search is not
possible for a larger � value. Please note that the execution
time of the baseline1 algorithm is much larger than the
proposed algorithm. On the other hand, in Table I, the
scheduling results from baseline2 algorithm cannot satisfy the
application completion time constraint in some cases, which
demonstrates that the MCC framework can improve the
performance of the mobile devices. We can observe that the
proposed algorithm can achieve a maximum energy reduction
by a factor of 3.1 compared with the baseline2 algorithm in
Table I, demonstrating the MCC framework can greatly reduce
the energy consumption in mobile devices.

TABLE I. COMPARISON BETWEEN THE PROPOSED ALGORITHM AND THE BASELINE ALGORITHMS (� �)

 � ��t� �s�st� �s�st� Exe. Time (s)
Proposed Baseline1 Baseline2 Proposed Baseline1 Baseline2 Proposed Baseline1

1 11 100 100 99 100 112 111 349 0.017123 2.810853
2 21 150 148 147 144 286 306 688 0.051820 5.155169
3 31 170 170 168 169 500 569 1018 0.117577 7.639482
4 41 210 208 209 215 747 814 1446 0.152341 10.347463
5 51 250 248 248 254 902 985 1732 0.278198 13.198991
6 61 330 328 328 322 1011 1183 1993 0.520647 15.982825
7 71 400 400 364 411 1304 1755 2818 0.633178 19.267765
8 81 450 448 434 469 1557 1877 3205 0.820833 22.775889
9 91 500 499 500 532 1705 2308 3642 1.208208 25.858333

10 101 550 548 488 582 1897 2520 4008 1.554154 29.702970

198198

Furthermore, we assume there are � � { heterogeneous
cores in the mobile device. The core 1 is a low-power core and
the core 6 is a high-performance core. The power consumption
�� values of the six cores are set as �� � _ , �a � � , and
�i � x , �̀ � z , �j � _{ , and �g � � . The power
consumption of the RF components is set as �" � ,<y. Ten
task graphs with different task numbers � and different
characteristics are generated to compare the proposed
algorithm with the baseline algorithms. Table II shows the
application completion time $=>=?% and the energy
consumption �=>=?% of the scheduling results from all the
algorithms. Table II also compares the program execution time
of our proposed algorithm and the baseline1 algorithm. Please
note that some scheduling results (for task graph 7 and 9 in
Table II) from baseline1 cannot satisfy the application
completion time constraint. This is because randomly
generating task execution locations cannot yield good results
when the number of cores and the number of tasks are
relatively large. Some scheduling results of the baseline1
algorithm will offload all tasks to the cloud, and of course
violate the application completion time constraint. That is why
the energy consumption results of the baseline1 algorithm on
task graph 7 and 9 are much lower than the proposed algorithm.

V. CONCLUSION
This work studies the MCC task scheduling problem. To

our best knowledge, this is the first task scheduling work that
minimizes energy consumption under a hard completion time
constraint for the task graph in the MCC environment, taking
into account the joint task scheduling on the local cores in the
mobile device, the wireless communication channels, and the
cloud. A novel algorithm is proposed that starts from a
minimal-delay scheduling and subsequently performs energy
reduction by migrating tasks among the local cores and the
cloud. A linear-time rescheduling algorithm is proposed for the
task migration such that the overall computation complexity is
effectively reduced. Simulation results demonstrate significant
energy reduction with the overall completion time constraint
satisfied.

ACKNOWLEDGEMENT
This work is supported in part by the Software and

Hardware Foundations program of the NSF’s Directorate for
Computer & Information Science & Engineering.

REFERENCES
[1] B. Hayes, “Cloud Computing,” Communications of the ACM, 2008.
[2] H. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile cloud

computing: architecture, applications, and approaches,” in Wireless
Commun. and Mobile Comput., 2011.

[3] A. Khan and K. Ahirwar, “Mobile cloud computing as a future of mobile
multimedia database,” in International Journal of Computer Science and
Communication, 2011.

[4] A. P. Miettinen and J. K. Nurminen, “Energy efficiency of mobile
clients in cloud computing,” in Proc. of the 2nd USENIX Conference on
Hot Topics in Cloud Computing, 2010.

[5] U. Kremer, J. Hicks, and J. M. Rehg, “A compilation framework for
power and energy management on mobile computers,” in Languages
and Compilers for Parallel Computing, Springer Berlin Heidelberg,
2003.

[6] H. Topcuoglu, S. Hariri, and M. Y. Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,” IEEE
Trans. on Parallel and Distributed Systems, vol. 13, no. 3, 2002.

[7] M. R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and R.
Govindan, “Odessa: enabling interactive perception applications on
mobile devices,” in Proc. of MobiSys, 2011.

[8] L. Yang, J. Cao, S. Tang, T. Li, and A. T. S. Chan, “A framework for
partitioning and execution of data stream applications in mobile cloud
computing,” in Proc. of IEEE 5th International Conference on Cloud
Computing, 2012.

[9] P. Rong and M. Pedram, “Power-aware scheduling and dynamic voltage
setting for tasks running on a hard real-time system,” in Proc. of Asia
and South Pacific Design Automation Conference, 2006.

[10] Z. Li, C. Wang, and R. Xu, “Task allocation for distributed multimedia
processing on wirelessly networked handheld devices,” in Proc. of the
International Parallel and Distributed Processing Symposium (IPDPS),
2002.

[11] Y. C. Lee and A. Y. Zomaya, “Minimizing energy consumption for
precedence-constrained applications using dynamic voltage scaling,” in
Proc. of IEEE/ACM International Symposium on Cluster Computing
and the Grid, 2009.

[12] K. Kumar and Y. H. Lu, “Cloud computing for mobile users: can
offloading computation save energy,” Computer, 2010.

[13] P. Greenhalgh, “Big.LITTLE processing with ARM Cortex-A15 &
Cortex-A7,” ARM White Paper, 2011.

TABLE II. COMPARISON BETWEEN THE PROPOSED ALGORITHM AND THE BASELINE ALGORITHMS (� � {)

 � ��t� �s�st� �s�st� Exe. Time (s)
Proposed Baseline1 Baseline2 Proposed Baseline1 Baseline2 Proposed Baseline1

1 11 60 59 58 59 849 1060 1528 0.205388 2.760699
2 21 80 79 75 80 1380.5 2350 2604 0.269298 5.114751
3 31 110 105 98 108 2216 2951 3857 0.262893 7.606270
4 41 140 140 130 137 2694 4074 5069 0.532875 10.126989
5 51 180 178 180 180 3024 4732 5964 1.003569 13.007214
6 61 240 240 236 239 3475 6378 7184 1.963312 16.029213
7 71 300 299 576 299 3272 355 8237 3.135316 19.158112
8 81 350 347 288 349 3543 9606 8711 4.435423 22.643440
9 91 380 379 736 377 4183 455 10177 5.977805 26.011400

10 101 420 417 411 420 4475 9156 11202 7.798183 29.839775

199199

