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Abstract—Mobile cloud computing (MCC) offers significant 
opportunities in performance enhancement and energy saving in 
mobile, battery-powered devices. An application running on a 
mobile device can be represented by a task graph. This work 
investigates the problem of scheduling tasks (which belong to the 
same or possibly different applications) in an MCC environment. 
More precisely, the scheduling problem involves the following 
steps: (i) determining the tasks to be offloaded on to the cloud, 
(ii) mapping the remaining tasks onto (potentially heterogeneous) 
cores in the mobile device, and (iii) scheduling all tasks on the 
cores (for in-house tasks) or the wireless communication channels 
(for offloaded tasks) such that the task-precedence requirements 
and the application completion time constraint are satisfied while 
the total energy dissipation in the mobile device is minimized. A 
novel algorithm is presented, which starts from a minimal-delay 
scheduling solution and subsequently performs energy reduction 
by migrating tasks among the local cores or between the local 
cores and the cloud. A linear-time rescheduling algorithm is 
proposed for the task migration. Simulation results show that the 
proposed algorithm can achieve a maximum energy reduction by 
a factor of 3.1 compared with the baseline algorithm. 

Keywords-mobile cloud computing (MCC); energy 
minimization; hard deadline constraint; task scheduling 

I. INTRODUCTION 
Mobile devices e.g., smart-phones and tablet-PCs, have 

become one of the major computing platforms nowadays. 
Unfortunately, the increase in the volumetric/gravimetric 
energy density of rechargeable batteries has been much slower 
than the increase in the power demand of these devices (which 
are equipped with increasing levels of advanced functionality), 
thus, resulting in a short battery life in mobile devices and a 
“power crisis” for the smart-phone technology development. 
At the same time, mobile devices have relatively weak 
computing resources compared to their “wall-powered” 
counterparts due to the constraints of weight, size and power. 

Cloud computing has been envisioned as the next-
generation computing paradigm because of the benefits that it 
offers, including on-demand service, ubiquitous network 
access, location independent resource pooling, and transference 
of risk [1]. In the cloud computing paradigm, a service 
provider owns and manages the computing and storage 
resources, and users have access to these resources over the 
Internet. With the help of wireless communication elements 
such as 3G, Wi-Fi, and 4G, a newly emerging mobile cloud 

computing (MCC) paradigm can shift the processing, memory, 
and storage requirements from the resource-limited mobile 
devices to the resource-unlimited cloud computing system 
[2][3][4].  

MCC has the potential of improving the performance of 
mobile devices by (i) selectively offloading tasks of an 
application (e.g., object/gesture recognition, image/video 
editing, and natural language processing) on to the cloud and 
(ii) carefully scheduling task executions on both the mobile 
device and the cloud taking into account the task-precedence 
requirements. This is mainly because servers in the cloud have 
much larger computation capability and higher speed than the 
mobile processor. Moreover, MCC helps save energy in mobile 
devices and prolong the battery operation time by offloading 
executions of computation-intensive tasks onto the cloud. 
Experiments conducted in [5] demonstrate that (i) a large 
application can be partitioned into various tasks with task-
precedence requirements, and (ii) the fine granularity of task-
level offloading can potentially achieve both energy saving and 
performance improvement. 

Task scheduling on limited computing resources and task 
offloading on to the cloud have been extensively studied and 
various heuristic algorithms proposed in [6]~[12]. These works 
are classified into two categories: (i) minimizing the overall 
application completion time (achieving higher performance) 
[6][7][8] and (ii) minimizing the total energy consumption 
(achieving longer battery life in battery-powered mobile 
devices) [9][10][11][12]. The HEFT algorithm in [6] was 
proposed for scheduling tasks of an application with task-
precedence requirements on heterogeneous processors with the 
objective of achieving high performance. This algorithm 
computes priorities of all tasks, selects a task with the highest 
priority value at each step, and assigns the selected task to the 
processor that minimizes the task’s finish time. Ra et al. [7] 
adopted an incremental greedy strategy and developed a 
runtime system which is able to adaptively make offloading 
and parallel execution decisions for mobile interactive 
perceptual applications in order to minimize the completion 
time of applications. A genetic algorithm was proposed in [8] 
to optimize the partitioning of tasks of a data stream 
application between a mobile device and the cloud for the 
maximum throughput.  

Reference [9] addressed the problem of minimizing energy 
consumption of a computer system performing periodic tasks, 
assuming that the periods of tasks are large enough such that 
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Figure 1. An example task graph. 

the positive slack time between tasks can be used for energy 
consumption reduction. Reference [10] formulated the task 
mapping problem as a maximum flow/minimum-cut problem 
to optimize the partition of a task graph between a mobile 
device and the cloud for the minimum energy consumption. 
However, the authors did not consider the overall application 
completion time and lacked a scheduling policy. Reference [11] 
extended the work of [6] on heterogeneous processers 
accounting for both the energy consumption and application 
completion time. However, the algorithm in [11] cannot 
guarantee that the scheduling result meets a hard constraint of 
application completion time. Kumar and Lu proposed a 
straightforward offloading decision strategy to minimize 
energy consumption according to the computation-to-
communication ratio and the networking environment [12], 
whereas a practical scheduling algorithm was omitted. 

Although MCC brings great benefits in performance and 
energy optimization for the mobile devices, it also gives rise to 
significant challenge in terms of designing an optimal policy to 
(i) determine the tasks of an application to be offloaded, (ii) 
map the remaining tasks onto potentially heterogeneous cores 
in a mobile device, and (iii) schedule tasks on the 
heterogeneous cores (for in-house processing) and wireless 
communication channels (for remote processing) such that the 
task-precedence requirements and application completion time 
constraint are satisfied with the minimum energy consumption 
on the mobile device side. Notice that although the mobile 
device cannot directly schedule tasks inside the cloud (this is 
the job of the cloud computing controller), it can anticipate and 
estimate the execution time of every task that has been 
offloaded to the cloud based on its prior knowledge.  

To differentiate the aforementioned problem from those 
addressed in the previous work, we refer to it as the MCC task 
scheduling problem. In particular, there are three key issues 
that must be addressed. 
• The application completion time constraint is a hard 

constraint and therefore, it should be addressed in the first 
place. Offloading computation-intensive tasks on to the 
cloud may result in a decrease in the application completion 
time. However, the offloading decision should be made 
judiciously considering the delay due to 
uploading/downloading data to/from the cloud. 

• The total energy consumption in mobile devices, including 
both the energy consumed by the processing units (the 
potentially heterogeneous cores in the mobile device) and 
by the RF components for offloading tasks is the objective 
function to be minimized. From the perspective of energy 
consumption, offloading tasks to the cloud saves the 
computation energy but it induces energy consumption in 
the communication units. 

• The task-precedence requirements should be enforced 
during the task scheduling. Unlike the conventional local 
task scheduling problem in [6], there exist additional task-
precedence requirements between the cloud and the local 
cores through wireless communication channels. 
In this work, we present a novel algorithm to address the 

MCC task scheduling problem to minimize the total energy 
consumption of an application in a mobile device with access 
to the computing resources on the cloud under a hard 
application completion time constraint. In particular, we 

generate a minimal-delay task scheduling in the first step, and 
after that we perform energy reduction in the second step by 
migrating tasks towards the cloud or other local cores that can 
bring great energy reduction without violation of the 
application completion time constraint. To avoid high time 
complexity, we propose a linear-time rescheduling algorithm 
for the task migrations. The simulation results show that the 
proposed algorithm can achieve a maximum energy reduction 
by a factor of 3.1 compared with the baseline algorithm. 

To our best knowledge, this is the first task scheduling 
work that minimizes energy consumption under a hard 
completion time constraint for the task graph in the MCC 
environment, taking into account the joint task scheduling on 
the local cores and the wireless communication channels of the 
mobile devices as well as on the cloud. 

II. MCC TASK SCHEDULING SYSTEM MODEL 

A. Applications 
An application is represented by a directed acyclic task 

graph � � ��� ��. Each node 	
 � � represents a task and a 
directed edge ��	
� 	
� � �  represents the precedence 
constraint such that task (node) 	
  should complete its 
execution before task (node) 	
  starts execution. There are a 
total number of � tasks (nodes) in the task graph. Given a task 
graph, the task without any parent is called the entry task, and 
the task without any child is called the exit task. As shown in 
Fig. 1, task 	� is the entry task and task 	�� is the exit task. For 
each task 	
, we define ����
 and �����
 as the amount of task 
specification and input data required to upload to the cloud and 
the amount of data required to download from the cloud, if the 
execution of task 	
 is offloaded onto the cloud. 

B. MCC Environment 
We consider a mobile device in the MCC environment that 

has access to the computing resources on the cloud. There are a 
number of �  heterogeneous cores in the processor of the 
mobile device. An example is the state-of-the-art big.LITTLE 
architecture [13] that is adopted by Broadcom, Samsung, etc. 
The operating frequency of the k-th core is �� and the (average) 
power consumption ��  is a super-linear function of �� , 
represented by �� � �� � ������ , where � � �� �  . The �� 
and �� values may be different for different cores. 

A task can be executed either locally on a core of the 
mobile device or remotely on the cloud. If task 	
 is offloaded 
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on to the cloud, there are three phases in sequence associated 
with the execution of the task 	
: (i) the RF sending phase, (ii) 
the cloud computing phase, and (iii) the RF receiving phase. In 
the RF sending phase, the specification and input data of task 
	
  are sent to the cloud by the mobile device through the 
wireless sending channel. In the cloud computing phase, task 
	
  is executed in the cloud. In the RF receiving phase, the 
mobile device receives the output data of the task 	
 from the 
cloud through the wireless receiving channel. The cloud 
transmits the output data of the task 	
  back to the mobile 
device as long as it finishes processing the task 	
. We use !" 
to denote the data sending rate of the wireless sending channel, 
and !#  to denote the data receiving rate of the wireless 
receiving channel. Accordingly, let �"  denote the power 
consumption levels of the RF component in the mobile device 
for sending data to the cloud. 

The local core in the mobile device or the wireless sending 
channel can only process or send one task at a time, and 
preemption is not allowed in this framework. On the other hand, 
the cloud can execute a large number of tasks in parallel as 
long as there is no dependency among the tasks. 

C. Task-Precedence Requirements in the MCC Environment 
We use $
��%  to denote the execution time of task 	
 on the 

& -th core of the mobile device, where superscript l means 
“local execution”. $
��%  is inversely proportional to the operating 
frequency �� . We use $
'  to denote the computation time of 
task 	
 on the cloud, where superscript c means “execution on 
the cloud”. The time of sending task 	
 onto the cloud, denoted 
by($
", is calculated by: 

$

" � ����
)!". (1) 

The time of receiving task 	
 from the cloud, denoted by $
#, is 
calculated by: 

$

# � �����
)!# . (2) 

For a task 	
 that is already scheduled (on a local core or 
the cloud), we use *$
% , *$
+" , *$
' , and *$
+#  to denote the 
finish time of task 	
  on a local core, the wireless sending 
channel (i.e., the task has been completely offloaded to cloud), 
the cloud, and the wireless receiving channel (i.e., the mobile 
device has completely received the output data of the task from 
the cloud), respectively. If the task 	
  is scheduled locally, 
*$


+" � *$

' � *$


+# � , ; otherwise (i.e., the task 	
  is 
offloaded on to the cloud), we have *$
% � ,. Please note that 
the mobile device can only schedule tasks in the local cores 
and the wireless channels, whereas the cloud computing 
controller schedules tasks that have already been uploaded 
inside the cloud and transmits the output data back to the 
mobile device. However, the mobile device can anticipate the 
execution of tasks in the cloud and estimate the corresponding 
*$


' and *$
+#  values from the parameters $
', $
#, etc. 
1) Local scheduling 

Before we schedule a task 	
 , all its immediate 
predecessors must have already been scheduled. Suppose that 
task 	
 is to be scheduled on a local core. Then the ready time 
of task 	
, denoted by !$
%, is calculated as: 

!$

% � -./01�2345�06� -./(7*$


%� *$

+#8, (3) 

where 2345�	
� is the set of immediate predecessors of the 
task 	
 . The ready time !$
%  is the earliest time when all 
immediate predecessors of task 	
  have completed execution 
and their results are available for task 	
: 
• If task 	
  (an immediate predecessor of task 	
) has been 

scheduled locally, -./9*$

%� *$


+#: � *$

%. In this case we 

have !$
% ; *$

% , which means that task 	
  can start 

execution on a local core only after the local execution of 
task 	
 has finished. 

• If task 	
  (an immediate predecessor of task 	
) has been 
offloaded on to the cloud, -./9*$


%� *$

+#: � *$


+# . In 
this case we have !$
% ; *$


+# , which means that task 	
 
can start execution on a local core only after the mobile 
device has completely received the output data (results) of 
task 	
 through the wireless receiving channel. 

We can only schedule task 	
 to start execution at or after its 
ready time !$
%, if the task has been scheduled on a local core. 
In this way the task-precedence requirements can be preserved. 
However, we might not be able to start executing task 	
  at 
time !$
%  exactly, because the cores may be executing other 
tasks at that time. 

2) Cloud scheduling 
On the other hand, suppose that task 	
 is to be offloaded 

on to the cloud. The ready time of task 	
  on the wireless 
sending channel, denoted by !$
+", is calculated as: 

!$

+" � -./

01�2345�06�
-./(7*$


%� *$

+"8< (4) 

!$

+"  denotes the earliest start time when the task 	
  can be 

scheduled on the wireless sending channel in order to preserve 
the task-precedence requirements:   
• If task 	
  (an immediate predecessor of task 	
) has been 

scheduled locally, -./9*$

%� *$


+": � *$

%. In this case we 

have !$
+" ; *$

%, which means that the mobile device can 

start to send task 	
 through the wireless channel only after 
the local execution of task 	
 has finished. 

• If task 	
  (an immediate predecessor of task 	
) has been 
offloaded on to the cloud, -./9*$


%� *$

+": � *$


+". In this 
case we have !$
+" ; *$


+", which means that the mobile 
device can start to send task 	
 through the wireless channel 
only after the mobile device has completed offloading task 
	
 to the cloud. 
The ready time of task 	
 on the cloud, denoted by !$
', is 

calculated as: 
!$


' � -./ 7*$

+"� -./

01�2345�06�
*$


'(8< (5) 

!$

' denotes the earliest time when task 	
 can start execution 

on the cloud. If task 	
 (an immediate predecessor of task 	
) is 
scheduled locally, *$
' � ,. Therefore, -./01�2345�06� *$


'( in 
(5) is the time when all the immediate predecessors of task 	
 
that are offloaded to the cloud have finished execution on the 
cloud. On the other hand, *$
+"  is the time when task 	
  has 
been completely offloaded to the cloud through the wireless 
sending channel, and therefore we have !$
' ; *$


+" . The 
cloud computing controller can schedule task 	
  to start 
execution at time !$
' exactly (because of the high parallelism 
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Figure 2. Flow chart of the MCC task scheduling algorithm. 

in the cloud), such that the task-precedence requirements can 
be preserved. 

Finally, let !$
+#  denote the ready time for the cloud to 
transmit back the results of task 	
, and we have: 

!$

+# � *$


'< (6) 
In other words, the cloud can transmit the output data (results) 
of task 	
 back to the mobile device immediately after it has 
finished processing this task. 

D. Energy Consumption and Application Completion Time 
If task 	
 is executed locally on the &-th core of the mobile 

device, the energy consumption of the task is given by: 
�
��
% � �� � ($
��

% < (7) 
If task 	
 is offloaded to the cloud, the energy consumption of 
the mobile device for offloading the task is given by: 

�

' � �" � $


". (8) 
The execution of task 	
 on the cloud does not consume energy 
of the mobile device. The total energy consumption of the 
mobile device for running the application, denoted by �=>=?%, is 
given by 

�=>=?% � @ �
A

B� . (9) 

where �
 equals to �
��%  if task 	
 is executed locally on the &-th 
core of the mobile device, and equals to �
'  if the task is 
offloaded to the cloud. 

The application completion time $=>=?% is calculated by: 
$=>=?% � -./

06�CD
=(=?"�"
-./(7*$


%� *$

+#8< (10) 

The inner -./ block gives the finish time of an exit task 	
. It 
equals to *$
% if 	
  is executed on a local core, and equals to 
*$


+#  if 	
 is offloaded to the cloud. 
The MCC task scheduling problem is to (i) determine the 

tasks of an application to be offloaded, (ii) map the remaining 
tasks onto the heterogeneous cores in a mobile device, and (iii) 
schedule the tasks on the heterogeneous cores and wireless 
communication channels. The objective is to minimize �=>=?% 
under the following constraints: (i) task-precedence 
requirements and (ii) the application completion time 
constraint $=>=?% � $E?D , where $E?D  is the maximum 
application completion time. 

III. MCC TASK SCHEDULING ALGORITHM 
The MCC task scheduling algorithm has two steps: initial 

scheduling for minimizing the application completion time 
$=>=?% , and task migration for minimizing the energy 

consumption �=>=?%  under the application completion time 
constraint $=>=?% � $E?D . The flow chart of the whole MCC 
task scheduling algorithm is shown in Fig. 2. 

In order to strictly satisfy the application completion time 
constraint, we minimize $=>=?% in the first step and then reduce 
energy consumption by moving tasks from a local core to 
another or to the cloud in the second step. Otherwise, if we 
minimize energy consumption at first, the application 
completion time constraint can hardly be guaranteed when we 
move a task from one core to another or to the cloud in the 
subsequent step. This is because of the task-precedence 
requirements and the parallelism constraints on the local cores 
and the wireless communication channels. 

A. Step One: Initial Scheduling Algorithm 
In the initial scheduling algorithm, we generate the 

minimal-delay scheduling without considering the energy 
consumption of the mobile device. Reference [6] proposed the 
HEFT algorithm, which generates the minimal-delay 
scheduling for tasks running on a number of heterogeneous 
cores. We modify the HEFT algorithm to take into account the 
joint scheduling of tasks on the local cores, the wireless 
communication channels, and the cloud. The initial scheduling 
algorithm has three phases: primary assignment, task 
prioritizing, and execution unit selection, as shown in Fig. 2. In 
the following, we discuss the three phases in detail: 

1) Primary assignment 
In this phase, we determine the subset of tasks that are 

initially assigned for the cloud execution. Offloading such 
tasks to the cloud will result in savings of the application 
completion time. Please note that this primary assignment is 
not the final decision, since we can assign more tasks for 
remote execution in the "execution unit selection" phase of 
initial scheduling. For each task 	
, we calculate the minimum 
local execution time $


%�E
F  (on the fastest core) as: 
$

%�E
F � -GH

�I�IJ
($
��

% (< (11) 
We also calculate the estimated remote execution time $
#C as: 

$

#C � $


" K ($

' K $


#< (12) 
If $
#C L $


%�E
F, task 	
 is assigned for remote execution on the 
cloud. We call such a task a “cloud task”. 

2) Task prioritizing 
In this phase, we calculate the priority of each task similar 

to the HEFT algorithm. First, we calculate the computation 
cost M
  for each task. If task 	
 is a cloud task, its computation 
cost is given by 

M
 � $

#C< (13) 

If task 	
  is not a cloud task, M
  is calculated as the average 
computation time of task 	
 in the local cores, i.e., 

M
 � .NO
�I�IJ

($
��
% (< (14) 

Then the priority level of each task 	
 is recursively defined by 
PQRSQR�T�	
� � M
 K -./01�UVWW�06� (PQRSQR�TX	
Y, (15) 

where UVWW�	
� is the set of immediate successors of task 	
. 
The priority levels are recursively computed by traversing the 
task graph starting from the exit tasks. For the exit tasks, the 
priority level is equal to 

PQRSQR�T�	
� � M
  for 	
 � �ZR�(��[&[. (16) 
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Figure 3. Task scheduling result by the initial scheduling algorithm. 

Basically, PQRSQR�T�	
� is the length of the critical path from 
task 	
 to the exit tasks. 

3) Execution unit selection 
In this phase, tasks are selected and scheduled in the 

descending order of their priorities. If task 	
 is the immediate 
predecessor of task 	
, we have PQRSQR�TX	
Y \ PQRSQR�T�	
� 
from (15). Therefore, when task 	
 is selected for scheduling in 
this phase, all its immediate predecessors have already been 
scheduled. 
• If the selected task 	
 is a cloud task, we calculate its ready 

time !$
+" on the wireless channel, and allocate the earliest 
available time slot on the wireless sending channel for 
offloading the task. Please note that the mobile device 
might not be able to start offloading task 	
 at time !$
+" if 
it is offloading other tasks at that time. We calculate *$
+" 
from the schedule, and then the cloud will begin executing 
task 	
  at the ready time !$
'  (because of the high 
parallelism in the cloud.) Finally we calculate *$
' �
!$


' K $

'  and *$
+# � *$


' K $

# . In this way, we have 

scheduled task 	
 and estimated the associated finish times. 
• If the selected task 	
  is not a cloud task, it may be 

scheduled on a local core or the cloud. We need to estimate 
the finish time of this task if it is scheduled on each core 
and the finish time of this task if it is offloaded to the cloud, 
using the similar procedure as described above. Then we 
schedule task 	
 on the core or offload it to the cloud such 
that the finish time is minimized. When we schedule the 
task, we need to make sure that the task-precedence 
requirements are satisfied according to Section II.C. 
Similar to the HEFT algorithm, the computation 

complexity of the initial scheduling algorithm is ]�� ^ �� , 
where � is the number of edges in the task graph �, and � is 
the number of cores. We consider sparse task graphs (i.e., 
� � ]��� where � is the number of tasks), and therefore the 
complexity of initial scheduling becomes ]�� ^ ��. 

As an example, we perform initial task scheduling on the 
task graph shown in Fig. 1, assuming that there are three 
heterogeneous cores in the mobile device. The $
��%  values are 
shown in the table in Fig. 1, and we use $
" �  , $
' � _, and 
$

# � _ for all the tasks. Fig. 3 presents the task scheduling 

results, where the horizontal axes denote the time. For example, 

task 	`  is executed on core 1 from time 5 to 12. Task 	a  is 
offloaded on to the cloud. The mobile device sends the 
specification and input data of task 	a  using the wireless 
sending channel from time 5 to 8. And then, task 	a  is 
computed on the cloud from time 8 to 9. The cloud transmits 
the output data (results) of task 	a back to the mobile device 
from time 9 to 10. The application completion time of this 
example is 18, which is the finish time of the exit task 	��. 

B. Step Two: Task Migration Algorithm 
The task migration algorithm aims at minimizing the 

energy consumption �=>=?%  under the application completion 
time constraint $=>=?% � $E?D . The energy consumption is 
reduced through migrating tasks from a local core to another 
local core or to the cloud. The task migration algorithm is an 
iterative algorithm comprised of a kernel algorithm and an 
outer loop. In each iteration, the outer loop determines the 
target task for migration and the new execution location (i.e., a 
different local core or the cloud) in order to minimize the 
energy consumption �=>=?% . It should also maintain the 
application time constraint $=>=?% � $E?D  without violation. 
Given the target task for migration and the new execution 
location, the kernel algorithm generates a new scheduling 
result that has the minimum application completion time $=>=?% 
with linear time complexity.  

1) Outer loop 
The outer loop of the task migration algorithm determines 

the target tasks to migrate from one local core to another local 
core or to the cloud, in order to reduce the mobile device’s 
energy consumption. It should also maintain the application 
time constraint $=>=?% � $E?D  without violation. Please note 
that the task migration algorithm does not account for the 
migration of a task from offloading to the cloud back to local 
processing, because the energy consumption of the mobile 
device will generally increase in this case. 

In each iteration of the outer loop, let �b denote the number 
of tasks that are currently scheduled on the local cores. Each of 
them can be moved to execute on one of the other � c _ cores 
or the cloud. Therefore, there are a total of �b ^ � migration 
choices. 
• For each choice, we run the kernel algorithm to find a new 

schedule, and calculate the corresponding energy 
consumption �=>=?% and application completion time $=>=?%. 

• We select the choice that results in the largest energy 
reduction compared with the current schedule and no 
increase in the application completion time  $=>=?% than the 
current schedule.  

• If we cannot find such a choice, we select the one that 
results in the largest ratio of energy reduction to the 
increase of the application completion time. We should 
make sure that the new application completion time does 
not exceed the limit value $E?D . 

We repeat the previous steps until the energy consumption of 
the mobile device cannot be further minimized. 

2) Kernel algorithm (i.e., rescheduling algorithm) 
In a task scheduling, let &
 denote the execution location of 

task 	
. &
 d , means that task 	
 is executed on the &
-th core, 
whereas &
 � , means that task 	
 is offloaded on to the cloud. 
In the kernel algorithm, we have an original scheduling of the 
task graph. We are given by the outer loop a task 	=?#  for 

196196



 

Figure 4. Task scheduling result by the MCC task scheduling algorithm. 

migration and its new execution location &=?# . The kernel 
algorithm should generate a new scheduling of the task graph 
�, where task 	=?#  is executed on the new location &=?# and the 
remaining tasks are executed on the same locations as the 
original scheduling. The kernel algorithm aims at minimizing 
the application completion time $=>=?%. On the other hand, the 
energy consumption �=>=?%  is fixed and can be directly 
calculated using (7)~(9) once the execution locations of tasks 
are known. Because the kernel algorithm will be called many 
times from the outer loop, we propose an efficient linear-time 
rescheduling algorithm of the task graph as the kernel 
algorithm, which is more efficient than the modified HEFT 
algorithm when the number of cores is relatively large. 

For the original scheduling, we use a sequence set e� �
7	������ 	���a�� f 8  to denote the sequence of tasks that are 
executed on the &-th local core and we use the sequence set 
e� � 7	������ 	���a�� f 8 to denote the sequence of tasks that are 
offloaded to the cloud through the wireless sending channel. 
For example, if we use the scheduling result in Fig. 3 as the 
original scheduling, we have e� � 7	`8 , ea � 7	g� 	h8 , 
ei � 7	�� 	i� 	j� 	k� 	l� 	��8, and e� � 7	a8. Suppose that task 
	=?#  is executed on the &>#
-th core in the original scheduling. 
We know from the outer loop that 	=?#  will be moved on to the 
&=?#-th core in the new scheduling. We should derive the new 
sequence sets e�FC+  for , � & � �, which corresponds to the 
sequence of tasks executed (or transmitted) on each core and 
the wireless sending channel in the new scheduling. In the 
linear-time rescheduling algorithm, we will not change the 
ordering of tasks in the other cores except for the &=?#-th core 
(because we are going to execute task 	=?#  in this core), i.e., 

e�
FC+ � e�m	=?#  for & � &>#
, (17) 

and 
e�
FC+ � e� for & d &=?# n & d &>#
 . (18) 

In the following, we derive e�opq
FC+ by inserting 	=?#  at a “proper” 

location of the original schedule sequence e�opq . We need to 
satisfy the following task-precedence requirements on the &=?#-
th core (&=?# � , means the wireless sending channel): 
• For any two tasks 	
  and 	
  that are executed (or 

transmitted) on the same core or wireless communication 
channel, task 	
 must be executed (or transmitted) before 	
 
if 	
 is a transitive predecessor of 	
 in the task graph �. 

Hence, we should insert 	=?#  into e�opq  such that 	=?#  is 
executed (or transmitted) after all its transitive predecessors 
and before all its transitive successors. In order to achieve this 
goal, we calculate the ready time !$=?#  of task 	=?#  in the 
original scheduling. !$=?#  equals to !$=?#%  (calculated from (3)) 
when &=?# \ , and equals to !$=?#+"  (calculated from (4)) when  
&=?# � ,. In addition, we know the start time e$
  of each task 
	
 in the original scheduling. Therefore, we derive e�opq

FC+ as: 
e�opq
FC+ � 7	��opq���� f � 	��opq�E�� rst3� 	��opq�Eu��� f 8, (19) 

where the start times of tasks 	��opq���� f � 	��opq�E� are earlier 
than !$=?#  and the start times of tasks 	��opq�Eu��� f are later 
than !$=?# . In this way, it can be proved that the task-
precedence requirements on the &=?#-th core are preserved. 

Now with the new sequence sets e�FC+ for , � & � �, we 
are going to find a new schedule of the task graph in linear 
time complexity ]���. We maintain two vectors Q���T_ and 

Q���T�. Q���T_
 is the number of immediate predecessors of 
task 	
  that have not been scheduled. Q���T�
 � , if all the 
tasks before task 	
  in the same sequence e�FC+  have already 
been scheduled. In addition, we maintain a LIFO stack for 
storing the tasks that are ready for scheduling. The stack is 
initialized by pushing the task 	
’s with both Q���T_
 � , and 
Q���T�
 � , into the empty stack. We repeat the following 
steps until the stack becomes empty again. Then we have 
scheduled all the tasks. 
• Pop a task 	
 from the stack.  
• Suppose that task 	
 � e�

FC+. If & � ,, we schedule the task 
on the wireless sending, and calculate the time when the 
mobile device completely receives the output data (results) 
of task 	
 from the cloud. Otherwise, schedule the task on 
the &-th core.  

• Update vectors Q���T_ (reducing Q���T_
  by one for all 
	
 � UVWW�	
�) and Q���T�, and push all the new tasks 	
 
with both Q���T_
 � , and Q���T�
 � , into the stack. 

C. Computation Complexity of MCC Task Scheduling 
Algorithm and an Example of Scheduling Result 
The overall computation complexity of the MCC task 

scheduling algorithm is ]��i ^ ��, which is comparable to 
the reference work on task scheduling. Fig. 4 presents the task 
scheduling result by the MCC task scheduling algorithm for the 
task graph in Fig. 1. The application completion time constraint 
is set as $=>=?% � �v. Please note that Fig. 3 only presents the 
result of the first step of the MCC task scheduling algorithm 
(i.e., the initial scheduling algorithm), whereas Fig. 4 presents 
the result of the entire MCC task scheduling algorithm. 
Comparing Fig. 3 with Fig. 4, we observe that more tasks are 
offloaded on to the cloud in Fig. 4 for reducing the energy 
consumption. The application completion time in Fig. 4 is 26, 
which is larger than that in Fig. 3. This is mainly due to the 
limit on the transmission rate of the wireless sending channel. 
The power consumption of core _w  are set as �� � _, �a � �, 
and �i � x . And the power consumption of the RF 
components is set as �" � ,<y. In summary, we have �=>=?% �
_,,<y and $=>=?% � _z in Fig. 3, and we have �=>=?% � �v and 
$=>=?% � �{ in Fig. 4. This result demonstrates that the task 
migration algorithm (i.e., the second step of the MCC task 
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scheduling algorithm) can significantly reduce the energy 
consumption while satisfying the application completion time 
constraint. 

IV. EXPERIMENTAL RESULTS 
In this section, we demonstrate the effectiveness of the 

proposed MCC task scheduling algorithm on a set of randomly 
generated task graphs. We compare the scheduling results of 
the proposed algorithm to those of the baseline algorithms. All 
the algorithms are implemented in MATLAB programs 
executed in a 2.6 GHz Intel Core i7 processor.  

We consider two baseline algorithms for comparison. The 
baseline1 algorithm is described as follows: 
1. Generate a random vector |, where |
 � 7,�_� f � &� f � �8 

denotes the computing location of task 	
. If |
 � ,, task 	
 
will be offloaded on to the cloud. If |
 � &, task 	
 will be 
executed on the &-th core in the mobile device. 

2. Order and schedule task executions on each local core, the 
cloud, and the wireless communication channels using the 
modified initial scheduling algorithm. Different from the 
initial scheduling algorithm described in Section III. A, in 
the modified initial scheduling algorithm, the execution 
location of each task is pre-defined by |. Calculated �=>=?% 
and $=>=?%. 

3. Repeat Step1~2 for 10,000 times to find the scheduling 
with the minimum �=>=?% under the constraint that $=>=?% �
$E?D . 

By comparing the proposed algorithm with the baseline1 
algorithm, we will demonstrate the effectiveness and efficiency 
of our proposed algorithm. 

The baseline2 algorithm is the same as our proposed 
algorithm except that it runs in the local mobile device 
environment only (i.e., the mobile device does not have access 
to the cloud and only the local resources can be used for task 
executions.) By comparing the proposed algorithm with the 
baseline2 algorithm, we will demonstrate that the MCC 
framework shows great benefits in energy saving and 
performance enhancement for the mobile devices. 

A random task graph generator is implemented to generate 
task graphs with various characteristics. Input parameters of 
the task graph generator are given below. 
• Number of tasks in the graph �. 
• The density of edges in the graph }. 
• Number of cores in the mobile device �. 
• The average task computation time on a local core $%

?0~. 

• The average task sending time $"
?0~. 

• The average task receiving time $#
?0~. 

• The average task computation time on the cloud $'
?0~. 

A task graph can be generated with � and }. The $
��%  values 
are generated in the following way: (i) $
��%  for _ � R � � are 
generated with the average value of $%

?0~ , (ii) $
��u�%  on the 
(k+1)-st core is set around $
��% )� for _ � & � � c _, where � 
is a factor. In addition, $
"/ $
'/$
# for _ � R � � are generated 
with the average value of $"

?0~/$'
?0~/$#

?0~. 
Now we assume there are � �   heterogeneous cores in 

the mobile device. The core _ is a low-power core and the core 
  is a high-performance core. The power consumption �� 
values of the three cores are set as �� � _, �a � �, and �i � x. 
The power consumption of the RF components is set as 
�" � ,<y. Ten task graphs with different task numbers � and 
different characteristics are generated for comparing the 
proposed algorithm with baseline algorithms. Table I shows the 
application completion time $=>=?%  and the energy 
consumption �=>=?%  of the scheduling results from all the 
algorithms. Table I also compares the program execution time 
of the proposed algorithm and the baseline1 algorithm. We do 
not compare the program execution time of the proposed 
algorithm and the baseline2 algorithm, because they are similar 
algorithms except that the baseline2 algorithm is designed for 
the mobile devices without cloud access. 

In Table I, we can see that both the proposed algorithm and 
the baseline1 algorithm can guarantee the application 
completion time constraint. The proposed algorithm achieves 
less energy consumption than the baseline1 algorithm for task 
graphs 2~9. However, for task graph 1, the proposed algorithm 
generates a scheduling with a little bit more energy 
consumption. This is because the task execution locations are 
exhaustively searched in the baseline1 algorithm with a small 
�  value �� � __� , whereas such exhaustive search is not 
possible for a larger � value. Please note that the execution 
time of the baseline1 algorithm is much larger than the 
proposed algorithm. On the other hand, in Table I, the 
scheduling results from baseline2 algorithm cannot satisfy the 
application completion time constraint in some cases, which 
demonstrates that the MCC framework can improve the 
performance of the mobile devices. We can observe that the 
proposed algorithm can achieve a maximum energy reduction 
by a factor of 3.1 compared with the baseline2 algorithm in 
Table I, demonstrating the MCC framework can greatly reduce 
the energy consumption in  mobile devices. 

TABLE I.    COMPARISON BETWEEN THE PROPOSED ALGORITHM AND THE BASELINE ALGORITHMS (� �  ) 

 � ��t� �s�st� �s�st� Exe. Time (s)
Proposed Baseline1 Baseline2 Proposed Baseline1 Baseline2 Proposed Baseline1 

1 11 100 100 99 100 112 111 349 0.017123 2.810853 
2 21 150 148 147 144 286 306 688 0.051820 5.155169 
3 31 170 170 168 169 500 569 1018 0.117577 7.639482 
4 41 210 208 209 215 747 814 1446 0.152341 10.347463 
5 51 250 248 248 254 902 985 1732 0.278198 13.198991 
6 61 330 328 328 322 1011 1183 1993 0.520647 15.982825 
7 71 400 400 364 411 1304 1755 2818 0.633178 19.267765 
8 81 450 448 434 469 1557 1877 3205 0.820833 22.775889 
9 91 500 499 500 532 1705 2308 3642 1.208208 25.858333 

10 101 550 548 488 582 1897 2520 4008 1.554154 29.702970 
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Furthermore, we assume there are � � {  heterogeneous 
cores in the mobile device. The core 1 is a low-power core and 
the core 6 is a high-performance core. The power consumption 
��  values of the six cores are set as �� � _ , �a � � , and 
�i � x , �̀ � z , �j � _{ , and �g �  � . The power 
consumption of the RF components is set as �" � ,<y. Ten 
task graphs with different task numbers �  and different 
characteristics are generated to compare the proposed 
algorithm with the baseline algorithms. Table II shows the 
application completion time $=>=?%  and the energy 
consumption �=>=?%  of the scheduling results from all the 
algorithms. Table II also compares the program execution time 
of our proposed algorithm and the baseline1 algorithm. Please 
note that some scheduling results (for task graph 7 and 9 in 
Table II) from baseline1 cannot satisfy the application 
completion time constraint. This is because randomly 
generating task execution locations cannot yield good results 
when the number of cores and the number of tasks are 
relatively large. Some scheduling results of the baseline1 
algorithm will offload all tasks to the cloud, and of course 
violate the application completion time constraint. That is why 
the energy consumption results of the baseline1 algorithm on 
task graph 7 and 9 are much lower than the proposed algorithm. 

V. CONCLUSION 
This work studies the MCC task scheduling problem. To 

our best knowledge, this is the first task scheduling work that 
minimizes energy consumption under a hard completion time 
constraint for the task graph in the MCC environment, taking 
into account the joint task scheduling on the local cores in the 
mobile device, the wireless communication channels, and the 
cloud. A novel algorithm is proposed that starts from a 
minimal-delay scheduling and subsequently performs energy 
reduction by migrating tasks among the local cores and the 
cloud. A linear-time rescheduling algorithm is proposed for the 
task migration such that the overall computation complexity is 
effectively reduced. Simulation results demonstrate significant 
energy reduction with the overall completion time constraint 
satisfied. 
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TABLE II.    COMPARISON BETWEEN THE PROPOSED ALGORITHM AND THE BASELINE ALGORITHMS (� � {) 

 � ��t� �s�st� �s�st� Exe. Time (s)
Proposed Baseline1 Baseline2 Proposed Baseline1 Baseline2 Proposed Baseline1 

1 11 60 59 58 59 849 1060 1528 0.205388 2.760699 
2 21 80 79 75 80 1380.5 2350 2604 0.269298 5.114751 
3 31 110 105 98 108 2216 2951 3857 0.262893 7.606270 
4 41 140 140 130 137 2694 4074 5069 0.532875 10.126989 
5 51 180 178 180 180 3024 4732 5964 1.003569 13.007214 
6 61 240 240 236 239 3475 6378 7184 1.963312 16.029213 
7 71 300 299 576 299 3272 355 8237 3.135316 19.158112 
8 81 350 347 288 349 3543 9606 8711 4.435423 22.643440 
9 91 380 379 736 377 4183 455 10177 5.977805 26.011400 

10 101 420 417 411 420 4475 9156 11202 7.798183 29.839775 
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