
Energy-Efficient, High-Performance, Highly-Compressed Deep
Neural Network Design using Block-Circulant Matrices

Siyu Liao∗1, Zhe Li∗2, Xue Lin3, Qinru Qiu2, Yanzhi Wang2, Bo Yuan1
1City University of New York, New York, NY, USA {sliao2@gradcenter, byuan@ccny}.cuny.edu

2Syracuse University, Syracuse, NY, USA {zli89, qiqiu, ywang393}@syr.edu
3Northeastern University, Boston, MA, USA xue.lin@northeastern.edu

Abstract—Deep neural networks (DNNs) have emerged as
the most powerful machine learning technique in numerous
artificial intelligent applications. However, the large sizes of
DNNs make themselves both computation and memory intensive,
thereby limiting the hardware performance of dedicated DNN
accelerators. In this paper, we propose a holistic framework for
energy-efficient high-performance highly-compressed DNN hard-
ware design. First, we propose block-circulant matrix-based DNN
training and inference schemes, which theoretically guarantee
Big-O complexity reduction in both computational cost (from
O(n2) to O(n logn)) and storage requirement (from O(n2) to
O(n)) of DNNs. Second, we dedicatedly optimize the hardware
architecture, especially on the key fast Fourier transform (FFT)
module, to improve the overall performance in terms of energy
efficiency, computation performance and resource cost. Third,
we propose a design flow to perform hardware-software co-
optimization with the purpose of achieving good balance between
test accuracy and hardware performance of DNNs. Based on the
proposed design flow, two block-circulant matrix-based DNNs on
two different datasets are implemented and evaluated on FPGA.
The fixed-point quantization and the proposed block-circulant
matrix-based inference scheme enables the network to achieve as
high as 3.5 TOPS computation performance and 3.69 TOPS/W
energy efficiency while the memory is saved by 108X ∼ 116X
with negligible accuracy degradation.

I. INTRODUCTION

Proposed in 1940’s, neural networks (NNs) [1] are the
most representative connectionism model in the artificial in-
telligence field. With their inherent parallel processing ar-
chitectures and provable capability of well-approximation to
arbitrary functions [2], the multi-layer NNs had gained tremen-
dous attractions in 1980’s. However, due to their limited
progress on performance (especially accuracy and speed) and
the competition from other simple but mathematically solid
machine learning techniques (e.g. support vector machine
and random decision forest), the research on NNs gradually
diminished in 1990’s and had lost its original prosperity for
more than one decade.

Driven by the unprecedented advance in semiconductor
technology and the explosive development of available data,
NNs are now experiencing their exciting resurgence in the big
data era: The superior processing power of modern computers
and the massive amount of data jointly enable the deep neural
networks (DNNs), as the large-scale NNs, to achieve much
stronger learning capability than the early-year small-size NNs
within the affordable training time. As a result, to date the
DNNs have produced several state-of-the-art accuracy results
on various tasks [3], [4], thereby making them become the
most popular and powerful machine learning technique in
numerous artificial intelligence applications.

As mentioned before, one of the key enablers for the success
of DNNs is their large-scale structures. Typically, a DNN
∗Siyu Liao and Zhe Li contributed equally to this work

consists of at least several cascade-connected layers and each
layer contains hundreds or thousands of neurons, and hence
resulting in very large number of parameters (or so-called
weights) for the entire DNN. Although such large model sizes
enable strong representing and learning capability, they also
make DNNs both computation and memory intensive. As a
result, it is very challenging to design DNN hardware with
high energy efficiency, high computation performance and
low memory footprint. Such emerging challenge, if not being
properly addressed, would greatly impede the widespread de-
ployment of DNNs in many resource-constrained applications,
such as embedded or mobile systems.

Targeting at this problem, several work have been proposed
to improve the hardware performance of DNNs via model
compression. In [5], [6], low-precision weight-based DNN
designs were proposed to reduce the weight memory size and
critical path delay. In [7], [8], the strategies of pruning DNNs
were used to develop the corresponding hardware since a large
amount of energy and area can be saved after removing un-
necessary weights or neurons. In [9], a reduced-memory DNN
design was proposed by performing low-rank approximation
for the weight matrices. However, aforementioned methods
need additional processing which requires additional training
effort. Under certain situations, these methods may lead to the
irregularity of the model.

In this paper, we propose a holistic framework for energy-
efficient, high-performance, memory-compressed DNN hard-
ware design. Different from prior compressed DNN hardware
that were based on the unstructured weight matrices, the model
reduction in this paper results from the use of structured
weight matrices: In the underlying network structure, the
weight matrices, which were original unstructured, are now
constructed in the block-circulant format, thereby leading to
order-of-magnitude reduction in computational cost and stor-
age requirement, which further translates to very significant
improvement in energy efficiency, computation performance
and memory compression ratio for the entire DNN accelera-
tors. In short, the contributions of this paper are summarized
as below:

1) We propose block-circulant matrix-based DNN training
and inference schemes, which theoretically guarantee Big-
O complexity reduction in both computational cost (from
O(n2) to O(n log n)) and storage requirement (from O(n2) to
O(n)) of DNNs. In addition, the proposed schemes has great
flexibility on the size of weight matrices and the controllable
balance between test accuracy and compression ratio.

2) We dedicatedly optimize the hardware architecture, es-
pecially on the key fast Fourier transform (FFT) module, to
improve the overall performance in terms of energy efficiency,
computation performance and resource cost. The quantization



scheme is also carefully investigated to achieve good balance
between precision loss and hardware performance.

3) We propose a design flow to perform hardware-software
co-optimization with the purpose of achieving good balance
between test accuracy and hardware performance of DNNs.
The proposed design flow can always ensure the finding of
the maximally compressed DNN model that satisfies the pre-
defined accuracy requirement, thereby achieving the optimal
hardware performance (in terms of energy efficiency, memory
size etc.) under the given constraint on accuracy.

4) We demonstrate the computation capability of the pro-
posed block-circulant matrix-based DNN by implementing two
design examples on two different datasets on FPGA. Com-
pared with peer work, our FPGA results show the proposed
block-circulant matrix-based DNN hardware can achieve very
high energy efficiency and computation performance.

The rest of this paper is organized as below. Section II
gives a brief review of the prior work on model reduction
and efficient DNN hardware designs. The preliminary and
background information on DNN training and inference is
introduced in Section III. Section IV presents the proposed
training and inference schemes for block-circulant matrix-
based DNNs. In Section V, the hardware architecture of
the DNNs, including the key FFT module and quantization
scheme, is discussed and optimized. Section VI presents the
design flow for software/hardware co-optimization. Experi-
mental results are presented and discussed in Section VII.
Finally, Section VIII draws the conclusions.

II. RELATED WORK

The efforts of compressing neural networks can be traced
back to 1980’s. In [10], the ”Optimal Brain Damage” was
proposed to use second derivative information to delete part
of weights in the training phase. Consider a large portion
of weights in the trained model are close to zero, network
pruning is an efficient approach to reduce the memory size of
DNN hardware [7], [8]. However, because of the inherently
irregular pruning pattern, the additional indexing operation
results in extra memory cost that offsets the saving from
pruning. In addition, the required re-training step after pruning
also increases the complexity of the overall training phase.

Besides pruning, lowering the representation precision of
weights is also very efficient for reducing both the model
size and computational cost of DNNs. In [5], fixed-point
implementations were developed to reduce the memory cost
of DNN hardware. Further, in [11], the hardware architecture
of binary neural networks (BNNs), which only uses binary
(-1/+1) weight representation, were proposed to achieve ex-
tremely low area and energy cost. However, the BNN usually
suffers from severe accuracy loss because of the ultra-low
representation precision scheme.

Low rank approximation (LRA) is another useful DNN
compression technique. By approximately representing the
weight matrix as the product of two small-size matrices, the
overall memory footprint and processing latency of DNN
hardware may be reduced if the two component matrices could
be properly found [9]. However, in order to control the inherent
approximation error incurred by the LRA, the improvement on
the hardware performance of the LRA-based DNNs is usually
not significant.

III. PRELIMINARIES

A. DNN Inference
In general, the DNN inference is performed in the forward

propagating format: The test data is input to the first layer
of DNN and the final classification results are output from
the last layer. During the entire forward propagation, the key
computation is the matrix-vector multiplication. For instance,
the computation in the fully-connected (FC) layers in the
inference phase is described as below:

y = f(a) = f(Wx), (1)

where f(·) is the activation function, W ∈ Rm×n is the weight
matrix, x ∈ Rn is the input vector, and a is the product of W
and x, respectively.

B. DNN Training
Different from inference, the DNN training is performed by

using the backward propagation: The gradient descents of the
weights to be updated are calculated from the last layer to the
first layer. More specifically, the update of the weight matrix
W can be performed as below:

W = W− ε ∂L
∂W

, (2)

where L is the loss function measuring how close the predic-
tion is compared to the ground-truth, and ε is the learning
rate. Notice that due to the different choices of f(·), the
explicit mathematic format of ∂L

∂W will be different; but the
key computation in equation (2) is still the matrix-vector
multiplication [12], [13].

C. Complexity of DNN Inference/Training
Equation (1) and (2) describe the general computation

procedure for DNN inference and training, respectively. Since
typically only the weight matrix W is stored in the feedfor-
ward or backward propagation, the space complexity of DNN
inference and training is O(n2) (m and n typically have the
same order of magnitude) for the FC layer. Consider that the
values of n (and m) are typically hundreds to thousands; the
number of parameters in the weight matrix W is typically very
large, thereby resulting in huge memory consumption in DNN
hardware. In addition, from the perspective of computation,
DNNs are also very computationally intensive. Consider that
matrix-vector multiplication is the key computation during the
forward and backward propagation processes, the computa-
tional complexity of DNN training and inference is O(n2)
for the layer. Therefore, the large value of n incurred by the
large model size of DNN also results in very high demands
on computation.

IV. REDUCED-COMPLEXITY DNN INFERENCE AND
TRAINING USING BLOCK-CIRCULANT MATRICES

As analyzed in Section III-C, the theoretical computational
complexity and space complexity for DNN inference and train-
ing are O(n2). Although the existing techniques, such as net-
work pruning, lowering representation precision, etc., can help
to improve the hardware performance of DNN accelerators,
those approaches do not fundamentally lower the theoretical
bound of space or computational complexity, thereby limiting
the potential in hardware performance improvement.

Different from prior efforts, in this section we propose to
leverage the unique mathematic property of block-circulant



matrices [14] to reduce the theoretical computational and
space complexities of DNN training and inference. The key
idea is to impose the block-circulant structure to DNNs: The
weight matrix W is always in the format of block-circulant
matrices. In this scenario, because i) block-circulant matri-
ces only require O(n) parameters, and ii) ultra-fast matrix-
vector multiplication algorithm with O(n log n) computational
complexity exists for this family of special matrices, such
imposing of the block-circulant structure immediately enables
order-of-magnitude reduction in both storage requirement and
computational cost.

Consider the inference and training schemes described
in equation (1)(2) are for the general unstructured weight
matrices, in this section we present low-space-cost, ultra-
fast, block-circulant matrix-based DNNs-oriented inference
and training schemes. First, the forward and backward propa-
gation processes that target to square circulant weight matrices
[15] are introduced. Then, the general block-circulant matrix-
based inference and training schemes for DNNs that contain
arbitrary-size weight matrices are developed.

A. Circulant Matrix-based DNN Inference and Training
In general, a circulant matrix W ∈ Rn×n [14] is defined by

a vector w = (w1, w2, . . . , wn) as the following:

W =


w1 wn . . . w3 w2

w2 w1 wn w3

... w2 w1
. . .

...

wn−1
. . . . . . wn

wn wn−1 . . . w2 w1

 . (3)

From equation (3) it is seen that an n-by-n circulant matrix
only has n parameters because of its strong structure. Clearly,
when such structure is imposed to the weight matrices of
DNNs, the required space cost for storing the weights is
immediately reduced from O(n2) to O(n).

Besides the advantage on low space cost, the use of circulant
matrices as weight matrices can also lead to low computa-
tional complexity for both inference and training, which are
described as below:

Inference: As indicated in equation (1), the dominating
computation during the forward propagation in the inference
is the matrix-vector multiplication (Wx). According to [14],
when W is a circulant matrix, Wx can be performed as below:

a = Wx = ifft(fft(w) ◦ fft(x)), (4)

where ◦ denotes the element-wise multiplication; fft(·) denotes
the fast Fourier transform; and ifft(·) denotes the inverse
fast Fourier transform. Notice that since the computational
complexity of n-point FFT/IFFT is only O(n log n), the com-
putational complexity of DNN inference can achieve order-of-
magnitude reduction (from O(n2) to O(n log n)).

Training: For backward propagation in the training, recall
that its key procedure is to perform the chain rule-based
calculation for the gradient of loss function L with respect
to the weight vector w as below:

∂L

∂w
=
∂L

∂a
∂a
∂w

, (5)

where ∂L
∂a is the gradient back-propagated from the subsequent

layer. Notice that in the scenario that W is a square circulant
matrix, as indicated in [15], ∂a

∂w is a circulant matrix defined by

the vector x′ = (x1, xn, xn−1, . . . , x2). Therefore, according
to [14], equation (5) can be simplified as below:

∂L

∂w
= ifft(fft(

∂L

∂a
) ◦ fft(x′)), (6)

where 1 is a column vector full of ones. In addition, the
gradient of input x which is back-propagated to the previous
layer, should be calculated as:

∂L

∂x
=
∂L

∂a
∂a
∂x

. (7)

Notice that here ∂a
∂x is also a circulant matrix that is defined as

w′ = (w1, wn, wn−1, . . . , w2) . Hence equation (7) can also
be simplified as below:

∂L

∂x
= ifft(fft(

∂L

∂a
) ◦ fft(w′)). (8)

From equation (6) and (8) it is seen that, when W is a circulant
matrix, the updating scheme for the gradients of w and x, as
the key part of DNN training, can also be calculated using
FFT/IFFT, thereby rendering order-of-magnitude reduction in
computational cost for training (from O(n2) to O(n log n)).

B. Block-Circulant Matrix-based DNN Inference and Training
Section IV-A presents the forward and backward propa-

gation for circulant matrix-based DNNs. However, in many
practical applications such schemes cannot be directly used
because: 1) It is very common that the weight matrices of
DNNs are non-square matrices due to the need of specific
applications; and 2) Even if the weight matrices are square,
as indicated in Section VI, in many cases the compression
effect led by the approach in Section IV-A is too aggressive
and hence causes non-negligible accuracy loss.

To address the above challenges, in this subsection, we
present the block-circulant matrix-based forward and back-
ward propagation for inference and training. The key idea
here is to partition the original arbitrary-size unstructured
weight matrix W ∈ Rm×n into 2D blocks of square sub-
matrices and then replace those sub-matrices with different
circulant matrices. Such partition strategy has the following
two advantages: 1) It is suitable for arbitrary-size weight
matrices without any requirement on the shape of W; and
2) It is an adjustable approach that can conveniently control
the compression ratio and potential accuracy loss by only
changing the partition size of sub-matrices. Such flexibility is
very useful for designing different types of compressed DNNs
with different resource budgets and/or target accuracy.

Next we present the details of the proposed block-circulant
matrix-based inference and training schemes. Let k be the
partition size and there are p × q blocks after partitioning
W, where p = m ÷ k and q = n ÷ k. Then W = [Cij ],
i ∈ {1 . . . p}, j ∈ {1 . . . q}. Assume each circulant matrix Cij

is defined by a vector wij . Correspondingly, the input x is also
partitioned so x = [x1,x2, . . . ,xq]

T . As a result, the forward
propagation process in the inference phase can be performed
as the following:

a = Wx =


∑q

j=1 C1jxj∑q
j=1 C2jxj

. . .∑q
j=1 Cpjxj

 =

a1a2. . .
ap

 , (9)

where ai ∈ Rk is a column vector.



Algorithm 1: Block-circulant matrix-based forward prop-
agation process

Input: w, x, p, q, k
Output: a
Initialize a with zeros.
for i← 1 until p do

for j ← 1 until q do
ai ← ai + ifft(fft(wij) ◦ fft(xj))

end
end
return a

Algorithm 2: Block-circulant matrix-based backward
propagation process

Input: ∂L
∂a , w, x, p, q, k

Output: ∂L
∂w , ∂L

∂x

Initialize ∂L
∂w and ∂L

∂x with zeros.
for i← 1 until p do

for j ← 1 until q do
∂L

∂wij
← ifft(fft( ∂L

∂ai
) ◦ fft(x′j))

∂L
∂xj
← ∂L

∂xj
+ ifft(fft( ∂L

∂ai
) ◦ fft(w′ij))

end
end
return ∂L

∂w , ∂L
∂x

Now consider the backward propagation process in the
training phase. Let ail be the l-th output element in ai. Then by
using the chain rule we can derive the backward propagation
process as follows:

∂L

∂wij
=

k∑
l=1

∂L

∂ail

∂ail
∂wij

=
∂L

∂ai

∂ai
∂wij

, (10)

∂L

∂xj
=

p∑
i=1

k∑
l=1

∂L

∂ail

∂ail
∂xj

=

p∑
i=1

∂L

∂ai

∂ai
∂xj

. (11)

Recall that ∂ai

∂wij
and ∂ai

∂xj
are circulant matrices as pointed out

before. Therefore, ∂L
∂wi

and ∂L
∂ai

∂ai

∂xj
can be calculated using

the same way as described in (6) and (8).
It should be noted that sometimes k may not divide m or

n. A general solution to this case is to pad zeros along the
dimension that k doesn’t divide. In this paper, W is padded
with zeros to the size such that p = dmk e and q = dnk e.

In summary, the above described forward and backward
propagation processes for block-circulant matrix-based DNN
models are shown in Algorithm 1 and Algorithm 2, respec-
tively. Note that by applying these partition-based processes,
the space complexity and computational complexity are re-
duced to O(pqk) and O(pqk log k).

V. HARDWARE ARCHITECTURE DESIGN

In this section, the hardware architecture of the block-
circulant matrix-based DNNs is presented. Because in prac-
tical applications the dedicated DNN accelerators are usually
in charge of on-line inference tasks to achieve low-latency
response and high throughput, while the CPU/GPU clusters
are in charge of off-line training tasks for flexible deployment
[16], in this section we focus on the hardware design for the
inference process.

FFT

xj

(a)

n-point 
FFT

xj

wij

xj

Pre-Calculated 
fft(wij)

(a)

(b)

wijxj

wijxj

n-point 
FFT

n-point 
IFFT

Input-Packing 
n/2-point FFT

n-point 
IFFT

Packing 
Transform

(ti=s2i-1+j*s2i)

n/2-Point 
FFT

Post-
Processing

fft(xj)xj

Fig. 1. (a) Straightforward design of 3-step FFT-involved operation. (b)
Optimized design using pre-calculation and input-packing strategy.

A. Optimization on FFT/IFFT Module
As indicated in Algorithm 1, the key computation of the

forward propagation process in the proposed block-circulant
matrix-based inference scheme is the FFT/IFFT calculation.
Consider that all the other operations in the inference, includ-
ing element-wise multiplication and addition and ReLU, have
a computational complexity of O(n), the optimization on the
FFT module is the key to improve the hardware performance
of the entire DNN accelerators.

Fig. 1 (a) shows a straightforward design for the 3-step FFT-
involved operation: (FFT -¿ Element-wise Multiplication -¿
IFFT). It can be seen that, in order to perform the inference for
a size-n input vector xj on one layer, totally 3 copies of FFT
or IFFT are needed (since IFFT can be easily performed on
the FFT module via very slight modification [17]). Although
the hardware performance of this design is already very
promising because of its O(n log n) computational complexity,
we present the following optimization techniques that can
further improve the hardware performance.

Pre-Calculation of fft(wij): Recall that in the inference
phase the weights of DNNs have already been determined from
the training phase. This phenomenon implies that fft(wij) can
be actually off-line pre-calculated. By using this property, we
only need to implement one FFT and one IFFT in the hardware
(as shown in Fig. 1 (b)), thereby resulting in 33% reduction
in the hardware resource of the data-path.

Packing the Real-valued Inputs: The standard FFT/ IFFT
hardware is typically used for the complex input signals that
widely exist in communication or signal processing systems.
Different from those two types of applications, most artificial
intelligence applications, such as computer vision, natural
language processing etc., only deal with real-valued data.
Based on this observation, the hardware architecture of FFT
module can be further optimized by using the input-packing
strategy.

More specifically, the packing strategy utilizes the property
that a size-n real-input FFT (rFFT) can be computed by using
a size-n/2 standard (complex-input) FFT [18]. In general, in
order to calculate the n-point FFT of a real-valued size-n
vector s, we can first generate a complex-valued size-n/2



TABLE I
HARDWARE PERFORMANCE AND PRECISION LOSS OF 128-POINT FFT

USING DIFFERENT QUANTIZATION SCHEMES

Bits Scheme Precision loss performance energy efficiency
(sign,int.,frac.) (Avg. L2 distance) (equivalent GOPS) (equivalent GOPS/W)

8 (1,3,4) 0.405 3, 506.18 5, 156.14
12 (1,5,6) 0.157 3, 047.42 4, 481.50
16 (1,7,8) 0.113 2, 686.97 3, 951.43

vector t, where ti = s2i−1 + j · s2i for i = 1, 2, . . . , n/2.
And then perform n/2-point FFT for t. After simple post-
processing with 4n− 1 additions and 4n− 4 multiplications,
the n-point fft(s) is calculated. Fig. 1 (b) shows the block
diagram of the packing-based FFT design. Obviously, such
packing strategy leads to additional nearly 25% reduction in
the required computing resource.

B. Quantization Scheme

The choice of quantization scheme is critical for the fixed-
point hardware design since it greatly affects the hardware
performance and the potential accuracy loss as compared to
the floating-point software implementation. Therefore, in this
paper we explore different quantization schemes to achieve
the maximum hardware performance within the affordable
precision loss. Consider FFT is the key computation block
in the proposed design, we investigate the performance of
fixed-point FFT in terms of computation performance, energy-
efficiency, and precision loss when using different quantization
schemes. As shown in Table I, we explore three different
quantization schemes to represent numbers in the computation
of an example 128-point FFT. Here (1,i,f ) means a (1+i+f )-
bit fixed-point binary numbers where 1 bit is used as sign bit, i
bits are used for integral parts, and f bits are used for fractional
parts. To measure the performance, giga operations per second
(GOPS), giga operations per Watt (GOPS/W) and the average
L2 distance among all the outputs, are used as the metrics
for computation performance, energy efficiency and precision
loss, respectively. Notice that here 10000 sets of random inputs
within the range [-1, 1] are used to calculate the precision
loss incurred by the quantization scheme. Also note that, as
other related works like [19] did, we calculate the number of
operations using the equivalent operations which means we
count operations in the original matrix multiplications instead
of in our proposed circulant matrix based FFT/IFFTs.

From Table I it is seen that, 8-bit quantization scheme can
lead to the best computation performance and energy effi-
ciency, but it meanwhile causes the most significant precision
loss. Also, the computation performance and energy efficiency
of 16-bit quantized design are only half of those of 8-bit design
though it has the smallest precision loss. Therefore, in order
to achieve good balance between the hardware performance
and precision loss, 12-bit (1,5,6) scheme is adopted as the un-
derlying quantization scheme in the proposed DNN hardware
design.

C. Overall Hardware Architecture

Fig. 2 shows the overall hardware architecture of the pro-
posed block-circulant matrix-based DNN accelerator. Here the
FFT/IFFT module is responsible for performing FFT/IFFT
operations. All the other operations in the inference, such
as element-wise multiplication, activation function etc., are
performed by peripheral computing module. The memory
module consists of ROM that stores the constant coefficients

FFT/IFFT 
Module

 Peripheral 
Computing 

Module

Memory ModuleC
o

n
tr

o
l M

o
d

u
le

Fig. 2. Proposed overall hardware architecture.

n/2-
Point 
FFT

n/2-
Point 
FFT

x(0)
x(2)

x(n-2)

x(1)
x(3)

x(n-1)

...
...

...
...

...
...

W0

W1

Wn/2-1

X(0)
X(1)

X(n/2-1)

X(n/2)
X(n/2+1)

X(n-1)

...
...n/4-

Point 
FFT

...

n/4-
Point 
FFT

...

...
...

n-point FFT

Fig. 3. Recursive property of FFT.

of FFT and RAM that stores the weights in the frequency
domain (fft(wij)).

Notice that the requirement on the reconfigurability has
become very important for the modern DNN accelerator
design because 1) The size of the deployed network may be
changed due to the change of target applications; and 2) the
area constraint may require to map the function of two or
several layers on the same hardware. Fortunately, the proposed
FFT-based DNN hardware is well-suitable for achieving the
reconfigurability because of the inherent recursive property
of FFT: As indicated in Fig. 3, the computation of n-point
FFT can be viewed as the parallel processing of two n/2-
point FFT plus a butterfly-style post-processing, and each n/2-
point FFT can be further decomposed to the smaller size FFT
using the similar way. Such strong recursive property offers
great benefits to improve the reconfigurability of the proposed
DNN accelerator. This is because for any given-size FFT
computation that is needed in the inference process, even if it is
not specifically implemented on the FFT hardware module, it
is still easy to calculate it by performing recursive computation
(for large-size FFT) or directly using partial hardware resource
of the existing FFT module (for small-size FFT). Also, the
design of control signal and memory storage organization also
become quite convenient because of the ultra-regular structure
of FFT.

VI. SOFTWARE-HARDWARE DESIGN OPTIMIZATIONS

As indicated in Section IV, the compression ratio of the
block-circulant matrix-based DNN can be adjusted by chang-
ing the partition sizes (k) of the weight matrices. In general,
increasing k can lead to a higher compression ratio, which
further translates to smaller memory requirement, better en-
ergy efficiency and higher computation performance. However,
though maximizing k (=min(m,n)) for each layer can always
achieve the best hardware performance, in many cases such
aggressive compression needs to be relaxed in order to avoid
the potentially non-negligible test accuracy loss. Therefore,
it is very necessary to perform software-hardware design co-



optimization to achieve the best balance between the compres-
sion ratio and test accuracy.

Motivated by this demand, in this section we propose a
design flow to explore the the impact of partition size k on
the software-level test accuracy and the hardware performance
of the network. Fig. 4 shows our proposed design flow, which
mainly includes two phases, greedy partitioning (blue arrow)
and back-trace adjustment (yellow arrow).

Next, we describe this design flow in details. Initially,
the baseline network accuracy (without any compression) is
precomputed. Then we sort weight matrices by size. If we
index d weight matrices of a DNN from input end to output
end, namely 1, 2, ..., d; then after sorting, ranked by the size,
the sequence of the matrices’ indices are i1, i2, ..., id, where
ij ∈ {1, 2, ..., d}, and sizeij ≥ sizeij+1 .

Greedy Partitioning: Starting from matrix i1, we apply the
block-circulant matrix with the largest possible partition size
(=min(m,n)), denoted as pi1 , and then train the network.
When we are setting up the partition size of layer ij (ij ∈
{1, 2, ..., d}), if the modified model can achieve a negligible
degradation (less than a pre-set t%) in test accuracy, we move
to the next matrix ij+1. Notice that here we intentionally
start this greedy partitioning from the larger-size matrices
first, and then gradually move to the smaller-size matrices.
Such arrangement can guarantee the overall compression ratio
always remains at a high level since the compression on the
large-size matrices tends to be more significant.

Back-trace Adjustment: Sometimes the current selected
partition size is too aggressive and hence causes non-negligible
accuracy loss. In this scenario, we reduce the partition size pij
of layer ij by a factor of 2. Such reduction in pij may need to
be performed using several rounds until the entire network can
achieve the degradation within t%. Notice that if the partition
size of matrix ij is reduced to 1, the procedure goes back to
matrix ij−1 and pij−1 is reduced by a factor of 2. After that,
we move to matrix ij again with resetting the partition size of
matrix ij to the the largest possible value.

Next we use an example seven-layer DNN on MNIST
dataset to illustrate this proposed software/hardware co-design
flow. The layer sizes of the example DNN are set as 784-2048-
2048-1024-1024-512-10, which are close to the configuration
in [20]. Here the shapes of the weight matrices between
adjacent layers are labeled in Table II. The input data for the
model is normalized by scaling the pixels of each data case
down to the range [0,1]. Both the original and compressed
models are trained with the learning rate set as 0.01. All
experiments are averaged over 5 times of training 100 epochs
from scratch.

Without loss of generality, we set the goal of this example
design flow as finding a compressed model that achieves
the maximum compression ratio (and hence the maximum
energy efficiency) with accuracy degradation less than 1%
(t = 1). Table III illustrates some compressed models and
the corresponding test accuracies when following the design
flow in Fig. 4. Here each model is denoted by the combination
of the partition size of each weight matrix. For example, for
model 1, which is actually the original uncompressed model, is
denoted as 1-1-1-1-1 since it can be viewed as the compressed
model with setting partition size as 1 for all weight matrices.
Consistent with the protocol of the design flow, the matrix-
wise compression procedure follows the ranking of weight
matrix size: In this example we try to compress each individual
weight matrix in the order of matrices 2, 3, 1, 4, 5. When we

Fig. 4. Design flow to set up partition size given a network.

TABLE II
SHAPES OF MATRICES IN THE EXAMPLE DNN MODEL

Matrix ID Layer Matrix shape Type
1 1-2 784×2048 FC
2 2-3 2048×2048 FC
3 3-4 2048×1024 FC
4 4-5 1024×1024 FC
5 5-6 1024×512 FC
6 6-7 512×10 Softmax

begin to compress the current weight matrix, we always start
with the largest partition size (greedy partitioning) to get the
highest compression ratio, and may reduce its partition size
or even change the partition size of previous compressed
weight matrices to achieve the balance between compression
ratio and accuracy (back-trace adjustment). As shown in Table
III, by following the proposed design flow, finally we get a
model with 108.29 compression ratio and 97.67% accuracy.
In general, the design flow in Fig. 4 can always ensure the
finding of the maximally compressed DNN model that satisfies
the pre-defined accuracy requirement, thereby achieving the
optimal hardware performance (in terms of energy efficiency,
memory size etc.) under the given constraint on accuracy.

VII. EXPERIMENTAL RESULTS

With the optimal configurations of the partition size de-
termined by the aformentioned design flow, in this section
we show the software and hardware performance of DNNs
on commonly used dataset. Software accuracy and hardware
performance (computation performance in term of GOPS
and energy efficiency in term of GOPS/W ) are measured
for each network. The hardware results are based on the
mapping results of a low-power and low-cost Intel R© (Altera)
Cyclone V FPGA, which can accommodate the weight storage

The last softmax layer in this example is not considered for compression
since the size of softmax layer is already very small.



TABLE III
SAMPLES OF CONFIGURATIONS OF THE PARTITION SIZE IN THE DESIGN

FLOW

ID Model Accuracy Compression
Partition size for matrix 1 ∼ 5 (%) Ratio

1 1-1-1-1-1 98.34 1.00
2 1-2048-1-1-1 97.93 1.79
3 1-2048-1024-1-1 97.81 2.97
4 784-2048-1024-1-1 96.25 5.96
5 512-2048-1024-1-1 96.41 5.95

. . . . . . . . .
128-128-128-128-128 97.67 108.29

requirement of representative deep learning applications after
performing the proposed block-circulant matrix-based com-
pression. Please note that the Cyclone V FPGA exhibits a
low static power consumption less than 0.15W and typical
operating frequency between 227MHz and 250MHz, making
it a good choice for energy efficiency optimization of FPGA-
based deep learning implementations.

A. MNIST
The MNIST [21] is a handwritten digit dataset (10 classes)

that consists of 28×28 grey-scale images with 60,000 images
for training and 10,000 images for testing. The baseline model
here we use is the example model (784-2048-2048-1024-1024-
512-10) discussed in Section VI. Clearly, as indicated in Table
II, the optimal partitioning scheme for this example model is
128-128-128-128-128 (for weight matrix 1 ∼ 5), which means
the required FFTs/IFFTs for this configuration are 128-point
FFT/IFFT.

Compression Ratio & Accuracy: With the use of this
partitioning scheme, the number of parameters of DNN can
be compressed by 108X , which leads to 108X saving in
memory size. Such very high compression in model size,
however, does not cause severe accuracy loss. As shown in
Table IV, compared with the baseline uncompressed model
with accuracy of 98.34% (see Table III), the FPGA-based
DNN inference hardware can achieve test accuracy as high as
97.58% with the quantization scheme of (1,7,8) (see Table IV).
That means the proposed DNN hardware can achieve 100+X
compression in memory size with less than 1% accuracy loss.

Computation Performance & Energy Efficiency: Table
IV also shows that the proposed block-circulant matrix-based
DNN hardware can achieve as high as 3, 690 (equivalent)
GOPS/W energy efficiency and 3, 506 (equivalent) GOPS with
8-bit quantization scheme. Besides, the 12-bit quantized design
can give a better trade-off among accuracy, the computation
performance, and the energy efficiency. It should be noted that
depending on the choice of specific quantization scheme, one
128-point FFT/IFFT module in the Cyclone V FPGA utilizes
44% ∼ 62% resources. Thus only one of FFT/IFFT with
quantization scheme (1,7,8) can reside in the FPGA; while
for other schemes two of FFT/IFFT can be mapped to the
FPGA. That explains why the computation performance with
quantization scheme (1,7,8) drops significantly as compared
to the ones using other schemes.

B. SVHN
The SVHN [22] is a color image dataset that are collected

from house numbers in Google Stree View Images. The data
set, which has 10 classes, contains 73, 257 training images
and 531, 131 additional training images plus 26, 032 testing

TABLE IV
PERFORMANCE ON MNIST DATASET W.R.T. DIFFERENT QUANTIZATION

SCHEMES

Scheme Accuracy Performance Energy Efficiency
(%) (equivalent GOPS) (equivalent GOPS/W)

(1,3,4) 96.33 3, 506.18 3, 690.71
(1,5,6) 97.19 3, 047.42 3, 017.25
(1,7,8) 97.58 1, 343.49 2, 442.71

Total Equivalent Operations: 18, 939, 904
Parameter Compression Ratio: 108.29

TABLE V
PERFORMANCE ON SVHN DATASET W.R.T. DIFFERENT QUANTIZATION

SCHEMES

Scheme Accuracy Performance Energy Efficiency
(%) (equivalent GOPS) (equivalent GOPS/W)

(1,3,4) 93.61 3, 506.18 3, 690.71
(1,5,6) 94.19 3, 047.42 3, 017.25
(1,7,8) 94.85 1, 343.49 2, 442.71

Total Equivalent Operations: 56, 623, 104
Parameter Compression Ratio: 118.48

images. In this experiment, we follow the same augmentation
method as adopted in [23]: padding 4 pixels on each dimension
and randomly sampling 32×32 crops. The baseline model we
use for this dataset is a nine-layer DNN with the size of 3072-
2048-2048-2048-2048-2048-2048-512-10.

Compression Ratio & Accuracy: The uncompressed base-
line software model gives 96.17% classification accuracy.
Again, we perform the design flow described in Section VI
to explore the optimal partition scheme. Notice that here con-
sidering the complexity of multi-channel inputs and enormous
number of parameters, we set t = 2. Our experiments show
that, by following the design flow in Section VI, 128-128-128-
128-128-128-128 (for weight matrix 1 ∼ 7) is identified for
the optimal partition scheme. As a result, the overall DNN
model is compressed by 118.48X . As shown in Table V, such
very high compression still incur negligible performance loss
even after using quantization scheme.

Computation Performance & Energy Efficiency: Based
on the aforementioned partition scheme, the FFTs/ IFFTs
needed for this experiment is also 128-point. Since 1) we
use same the FPGA platform to build the hardware for this
SVHN dataset and MNIST dataset and 2) the required type
of FFT/IFFTs are identical (128-point), it is not surprising
that the computation performance and energy efficiency for
the DNN hardware target to these two datasets are the same
(see Table IV and Table V), even though their total equivalent
operations are different. Also, Table V shows that 12-bit
quantization scheme gives the best trade-off among accuracy,
the computation performance, and the energy efficiency, which
is consistent with the phenomenon we observe from Table IV.

C. Comparison with state-of-the-art works

The reference FPGA-based implementations are state-of-
the-arts represented by [FPGA16] [24], [ICCAD16] [25],
[FPGA17, Han] [19], and [FPGA17, Zhao] [26]. In those
work, large-scale AlexNet, VGG-16, or a custom-designed
recurrent neural network [19] were implemented. For fair
comparison, we use equivalent GOPS and GOPS/W for all
model compression methods, including ours. Although those
references may focus on different deep learning models and



Fig. 5. Comparison on performance and energy efficiency with state-of-the
art FPGA results.

structures, both GOPS and GOPS/W are general metrics that
are (in general) independent of the differences of models.

In Fig. 5, we can observe significant improvement achieved
by the proposed FPGA-based implementations as compared
with prior arts in terms of energy efficiency. Compared with
prior work with heuristic model size reduction techniques [19],
[26] (reference [19] uses the heuristic weight pruning method,
and [26] uses a binary-weighted neural network XORNet.),
our approach achieves 60X ∼ 83X improvement in energy
efficiency. When comparing with prior arts with uncompressed
(or partially compressed) deep learning system [24], [25],
the energy efficiency improvement of our approach can reach
150X ∼ 260X. These results demonstrate a clear advantage
of the proposed framework using block-circulant matrices on
improving computation performance and energy efficiency.

VIII. CONCLUSION

In this paper, we presented a holistic framework for energy-
efficient high-performance highly-compressed DNN hardware
design. First, we propose block-circulant matrix-based DNN
training and inference schemes, which theoretically guaran-
tee Big-O complexity reduction in both computational cost
and storage requirement of DNNs. Second, we dedicatedly
optimize the hardware architecture, especially on the key
fast Fourier transform (FFT) module, to improve the over-
all performance in terms of energy efficiency, computation
performance and resource cost. Third, we propose a design
flow to perform hardware-software co-optimization with the
purpose of achieving good balance between test accuracy and
hardware performance of DNNs. Based on the proposed design
flow, two block-circulant matrix based DNNs on two different
datasets are implemented and evaluated on Intel Cyclone V
FPGA. The fixed-point quantization and block-circulant matrix
inference scheme enables the network to achieve as high
as 3.5 TOPS (equivalent) computation performance and 3.69
TOPS/W energy efficiency while the memory is saved by
108X and 116X, respectively. Accuracies in both networks
are negligibly degraded.

ACKNOWLEDGEMENT

This work is supported by the NSF Algorithm-in-the-Field
(AitF) program, the DARPA SAGA program, CUNY Research
Foundation, and Syracuse University.

REFERENCES

[1] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent
in nervous activity,” The bulletin of mathematical biophysics, vol. 5,
no. 4, pp. 115–133, 1943.

[2] S. Mittal, “A survey of techniques for approximate computing,” ACM
Computing Surveys (CSUR), vol. 48, no. 4, p. 62, 2016.

[3] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa, “Natural language processing (almost) from scratch,” Journal
of Machine Learning Research, vol. 12, no. Aug, pp. 2493–2537, 2011.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[5] K. Hwang and W. Sung, “Fixed-point feedforward deep neural network
design using weights+ 1, 0, and- 1,” in Signal Processing Systems (SiPS),
2014 IEEE Workshop on. IEEE, 2014, pp. 1–6.

[6] R. Andri, L. Cavigelli, D. Rossi, and L. Benini, “Yodann: An ultra-
low power convolutional neural network accelerator based on binary
weights,” in VLSI (ISVLSI), 2016 IEEE Computer Society Annual
Symposium on. IEEE, 2016, pp. 236–241.

[7] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

[8] Chen, Yu-Hsin and Krishna, Tushar and Emer, Joel and Sze, Vivienne,
“Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Con-
volutional Neural Networks,” in IEEE International Solid-State Circuits
Conference, ISSCC 2016, Digest of Technical Papers, 2016, pp. 262–
263.

[9] J. Chung and T. Shin, “Simplifying deep neural networks for neuro-
morphic architectures,” in Design Automation Conference (DAC), 2016
53nd ACM/EDAC/IEEE. IEEE, 2016, pp. 1–6.

[10] Y. LeCun, J. S. Denker, S. A. Solla, R. E. Howard, and L. D. Jackel,
“Optimal brain damage.” in NIPs, vol. 2, 1989, pp. 598–605.

[11] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Ben-
gio, “Binarized neural networks: Training deep neural networks with
weights and activations constrained to+ 1 or-1,” arXiv preprint
arXiv:1602.02830, 2016.

[12] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[13] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural networks, vol. 61, pp. 85–117, 2015.

[14] V. Pan, Structured matrices and polynomials: unified superfast algo-
rithms. Springer Science & Business Media, 2012.

[15] Y. Cheng, F. X. Yu, R. S. Feris, S. Kumar, A. Choudhary, and S.-
F. Chang, “An exploration of parameter redundancy in deep networks
with circulant projections,” in Proceedings of the IEEE International
Conference on Computer Vision, 2015, pp. 2857–2865.

[16] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” arXiv preprint
arXiv:1704.04760, 2017.

[17] A. V. Oppenheim, Discrete-time signal processing. Pearson Education
India, 1999.

[18] E. O. Brigham, “The {F} ast {F} ourier {T} ransform and its applica-
tions,” 1988.

[19] S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo, S. Yao,
Y. Wang et al., “Ese: Efficient speech recognition engine with sparse
lstm on fpga,” in Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. ACM, 2017, pp.
75–84.

[20] M. W. Gardner and S. Dorling, “Artificial neural networks (the multi-
layer perceptron)a review of applications in the atmospheric sciences,”
Atmospheric environment, vol. 32, no. 14, pp. 2627–2636, 1998.

[21] Y. LeCun, C. Cortes, and C. J. Burges, “The mnist database of
handwritten digits,” URL http://yann. lecun. com/exdb/mnist, 1998.

[22] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
“Reading digits in natural images with unsupervised feature learning,”
in NIPS workshop on deep learning and unsupervised feature learning,
vol. 2011, no. 2, 2011, p. 5.

[23] C.-Y. Lee, S. Xie, P. W. Gallagher, Z. Zhang, and Z. Tu, “Deeply-
supervised nets.” in AISTATS, vol. 2, no. 3, 2015, p. 5.

[24] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang,
N. Xu, S. Song et al., “Going deeper with embedded fpga platform for
convolutional neural network,” in Proceedings of the 2016 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. ACM,
2016, pp. 26–35.

[25] C. Zhang, Z. Fang, P. Zhou, P. Pan, and J. Cong, “Caffeine: towards
uniformed representation and acceleration for deep convolutional neural
networks,” in Proceedings of the 35th International Conference on
Computer-Aided Design. ACM, 2016, p. 12.

[26] R. Zhao, W. Song, W. Zhang, T. Xing, J.-H. Lin, M. Srivastava,
R. Gupta, and Z. Zhang, “Accelerating binarized convolutional neural
networks with software-programmable fpgas,” in Proceedings of the
2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays. ACM, 2017, pp. 15–24.


