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Abstract—Deep learning has delivered its powerfulness in
many application domains, especially in image and speech recog-
nition. As the backbone of deep learning, deep neural networks
(DNNs) consist of multiple layers of various types with hundreds
to thousands of neurons. Embedded platforms are now becoming
essential for deep learning deployment due to their portability,
versatility, and energy efficiency. The large model size of DNNs,
while providing excellent accuracy, also burdens the embedded
platforms with intensive computation and storage. Researchers
have investigated on reducing DNN model size with negligible
accuracy loss. This work proposes a Fast Fourier Transform
(FFT)-based DNN training and inference model suitable for
embedded platforms with reduced asymptotic complexity of both
computation and storage, making our approach distinguished
from existing approaches. We develop the training and inference
algorithms based on FFT as the computing kernel and deploy
the FFT-based inference model on embedded platforms achieving
extraordinary processing speed.

I. INTRODUCTION

Recently deep learning has outstood from traditional ma-
chine learning techniques in many application areas, especially
in image and speech recognition [1], [2]. The excellence of
deep learning has also resulted in explorations of several
emerging real-world applications, such as self-driving systems
[3], automatic machine translations [4], drug discovery and
toxicology [5]. The deep learning is based on the structure of
deep neural networks (DNNs), which consist of multiple layers
of various types and hundreds to thousands of neurons in each
layer. Recent evidence has revealed that the network depth is of
crucial importance to the success of deep learning, and many
deep learning models for the challenging ImageNet dataset
are sixteen to thirty layers deep [1]. Deep learning achieves
significant improvement in overall accuracy by extracting
complex and high-level features at the cost of considerable
up-scaling in the model size.

In the big data era and driven by the development of
semiconductor technology, embedded systems are now be-
coming an essential computing platform with ever-increasing
functionalities. At the same time, researchers around the world
from both academia and industry have devoted significant
efforts and resources to investigate, improve, and promote the
applications of deep learning in embedded systems [6]. Despite
the advantages in DNN recognition accuracy, the deep layered
structure and large model size of DNNs also increase com-
putational complexity and memory requirement. Researchers
are faced with the following challenges when deploying deep
learning models on embedded systems: (i) Confined by the
communication bandwidth of embedded systems, which are
usually mobile terminals, it is still challenging to download
large-size DNN models, even which can be offline-trained in
data centers. (ii) The large model size of deep learning also
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imposes stringent requirements on the computing resources and
memory size of embedded systems.

Motivated by these challenges, it is intuitive to implement a
reduced-size deep learning model with negligible accuracy loss.
In fact, the state-of-the-art DNNs are often over-parameterized,
hence the removal of redundant parameters in the deep learning
models, if performed properly, will produce similar overall ac-
curacy as the original models [1]. Encouraged by this discovery,
various deep learning model compression approaches have been
investigated [6]–[10], including weight precision reduction,
network pruning, weight matrix factorization, etc. In this work,
we propose a Fast Fourier Transform (FFT)-based DNN training
and inference model suitable for embedded systems due to
reduced asymptotic complexity of both computation and storage.
Our approach has obvious advantages over existing works on
deep learning model compression e.g., [6], [8], [9] in that
those approaches result in an irregular network architecture
that increases training and inference computation time, while
our approach facilitates computation. Please also note the our
proposed framework is distinct from the prior work of using
FFT for convolutional layer acceleration by LeCun et al. [11],
because this prior work can only achieve convolutional layer
acceleration instead of simultaneous compression. We develop
the training and inference algorithms based on FFT as the
computing kernel and deploy the FFT-based inference model
on embedded platforms. Experimental test results demonstrate
that our model provides the optimization in different languages
and achieve a significant improvement.

II. RELATED WORK

Over the past decade, a substantial number of techniques
and strategies have been proposed to compress neural network
size. Weight pruning [6] is a well-known effective approach,
in which many weights with values of 0 are pruned to
achieve high compression ratio. Other techniques such as
threshold setting [6], biased weight decay [9], etc., could be
integrated to the weight pruning procedure. Another simple
and popular approach to DNN model compression is the low-
rank approximation of the weight matrix [12]. To overcome
the potential high accuracy loss after low-rank approximation,
[13] proposed to perform fine-tuning for the post-factorization
of low-rank weight matrices to retain accuracy . Lowering the
presentation precision of weights is also an straightforward
technique to reduce both the model size and computation cost
of DNNs. A fixed-point implementation was explored to replace
the original floating-point models [14]. Furthermore, designs
with ultra-low precision weights, such as binary (-1 / +1) or
ternary (-1 / 0 / +1) representation were proposed [15], [16].
By exploring the local and global characteristics of the weight
matrix, weight clustering was proposed to reduce the number
of weights linearly [17]. In addition, with the aid of gradients
clustering in the training phase, the accuracy loss incurred by
the weight clustering can be negligible [6].

Some recent works adopted structured weight matrices in
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order to reduce the model size. In [18], weight matrices of fully-
connected (FC) layers were constructed in the Toeplitz-like
format to remove the redundancy of the DNN model. In [19],
the circulant matrix was introduced to enable further reduction
in model size. An n-by-n circulant matrix has a smaller number
of parameters i.e., n than that of a same-size Toeplitz matrix
i.e., 2n. In this work, we generalize the structured weight
matrix method in that (1) we utilize block-circulant matrices
for weight matrix representation, which achieves a trade-off
between compression ratio and accuracy loss; (2) we extend
the structured matrix method to convolutional (CONV) layers
besides the FC layers; (3) we propose FFT-based DNN training
and inference model and algorithm, which is highly suitable
for deployment in embedded systems; and (4) we implement
and test the FFT-based DNN inference in various embedded
platforms.

III. BACKGROUND

In this section, we introduce basic concepts of deep neural
networks (DNNs), Fast Fourier Transform (FFT), and structured
matrices, as the background of our proposed FFT-based training
and inference algorithms. Specifically, we explain the various
DNN layer types, the Cooley-Tukey algorithm for FFT, and
the block-circulant matrices as the adopted structured matrices.

A. Deep Neural Networks

Deep neural networks (DNNs) are distinguished from other
types of neural networks by their depth and have dramatically
improved the state-of-the-art in speech recognition, object
detection, etc. Some commonly adopted DNN models include
deep convolutional neural networks, deep belief networks,
and recurrent neural networks. Despite the various network
topologies targeting for different applications, these DNN
models comprise of multiple functional layers with some
commonly used structures. Following are the most commonly
used layer structures in the state-of-the-art DNN models:

The fully-connected (FC) layer is the most storage-
intensive layer in DNN models [20] since each of its neurons is
fully connected with all the neurons in the previous layer. The
computation procedure of a FC layer consists of matrix-vector
arithmetics (multiplication and addition) and transformation by
the activation function, described as follows:

\bfy = \psi (\bfW \bfT \bfx + \theta ) (1)

where \bfy and \bfx are outputs of this layer and the previous layer,
respectively; W \in \BbbR m\times n is the weight matrix of the synapses
between this FC layer (with n neurons) and its previous layer
(with m neurons); \theta \in \BbbR n is the bias vector; and \psi (\cdot ) is the
activation function. The Rectified Linear Unit (ReLU) \psi (x) =
\mathrm{m}\mathrm{a}\mathrm{x}(0, x) is the most widely utilized activation function in
DNNs.

The convolutional (CONV) layer, as the name implies,
performs two-dimensional convolution of its input to extract
features that will be fed into subsequent layers for higher-level
feature extracting. A CONV layer is associated with a set of
learnable filters [21], which are activated when specific types
of features are found at some spatial positions from the inputs.
Filter-sized moving windows are applied to the inputs to obtain
a set of feature maps, by calculating the convolution of the
filter and inputs in the moving window. Each convolutional
neuron, representing one pixel in a feature map, takes a set
of inputs and the corresponding filter weights to calculate the
inner-product. Given input feature map X and the r \times r-sized
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Fig. 1. Illustration of Cooley-Tukey algorithm of FFT.

filter (i.e., the convolutional kernel) F, the output feature map
Y is calculated as

ya,b =

r\sum 
i=1

r\sum 
j=1

xa+i - 1,b+j - 1 \times fi,j , (2)

where ya,b, xa+i - 1,b+j - 1, and fi,j are elements in Y, X, and
F, respectively. Multiple convolutional kernels can be adopted
to extract different features in the same input feature map.
Multiple input feature maps can be convolved with the same
filter and results are summed up to derive a single feature map.

B. Fast Fourier Transforms

The Fast Fourier Transform (FFT) is an efficient procedure
for computing the discrete Fourier transform (DFT) of time
series. It takes advantage of the fact that the calculation of the
coefficients of the DFT can be carried out iteratively, which
results in a considerable savings of computation time. The
FFT not only reduces the computational complexity, but also
substantially reduces round-off errors associated with these
computations. In fact, both the computation time and round-off
error are essentially reduced by a factor of n/(log2n) where
n is the number of data samples in the time series [22]. Fig. 1
shows the simplest and most common form of FFT, which is
based on the Cooley-Tukey algorithm [23]. It uses a divide
and conquer approach to recursively break down the DFT of
an arbitrary composite size N = N1 \cdot N2 into many smaller
DFTs of sizes N1 and N2, in order to reduce the computation
time to O(n \mathrm{l}\mathrm{o}\mathrm{g} n) for highly composite N [23].

C. Structured Matrices

An n-by-m matrix \bfA is called a structured matrix when it
has a low displacement rank \upsilon [18]. One of the most important
characteristics of structured matrices is their low number of
independent variables. The number of independent parameters
is O(n) for an n-by-n structured matrix instead of O(n2),
which indicates that the storage complexity can be potentially
reduced to O(n). As a representative example, a circulant
matrix \bfW \in \BbbR n\times n is defined by a vector \bfw = (w1, w2, ..., wn)
as follows: \left[       

w1 wn . . . w3 w2

w2 w1 wn w3
...

...
...

. . .
...

wn - 1
. . . . . . wn

wn wn - 1 . . . w2 w1

\right]       
The definition and analysis of structured matrices have

been generalized to the case of m-by-n matrices where m \not = n,
e.g., the block-circulant matrices. Besides, the computational
complexity for many matrix operations, such as matrix-vector
multiplication, matrix inversion, etc., can be significantly
reduced when operating on structured matrices.



IV. FAST FOURIER TRANSFORM-BASED DNN MODEL

In this section, we propose an efficient inference algorithm
and explain the training algorithm in deep neural networks by
using block-circulant matrices. We achieve a simultaneous
and significant reduction in computational complexity of
inference and training processes, and also weight storage.
Besides, we have performed theoretical analysis to prove the
effectiveness of substituting matrix multiplication with the
Fast Fourier Transform method and utilizing block-circulant
matrices, thereby guaranteeing applicability of the proposed
framework on a wide variety of applications and emerging deep
learning models.

A. Block-Circulant Matrix-Based Inference and Training Algo-
rithms for FC Layers

Cheng et al. proposed circulant matrix-based DNN training
and inference algorithms for FC layers [19]. However, in many
practical applications such schemes cannot be directly used
because: (1) It is very common that the weight matrices of
DNNs are non-square matrices due to the specific need of
different applications; and (2) Even if the weight matrices
are square, in many cases the compression is too aggressive
and hence causes non-negligible accuracy loss. To address the
above challenges, we present the block-circulant matrix-based
inference and training algorithms.

Recall that the forward propagation during the inference
phase of a FC layer is performed as \bfy = \psi (\bfW \bfT \bfx +\theta ), where \psi 
is the activation function, \bfW is the weight matrix, \bfx is the input
vector, and \theta is the biases. The computation bottleneck is the
calculation of \bfW \bfT \bfx . When using a block-circulant matrix for
representing \bfW , a fast multiplication algorithm for \bfW \bfT \bfx exists,
which will result in a significant reduction in computational
complexity. Assume that the weight matrix is an m-by-n block-
circulant matrix \bfW = [\bfC 1| \bfC 2| ...| \bfC k]

\bfT ; the input vector is
\bfx = (\bfx 1| \bfx 2| ...| \bfx k); and the bias vector is \theta = (\theta 1| \theta 2| ...| \theta k).
Each circulant matrix \bfC i \in \BbbR n\times n is defined by a length-
n vector \bfw i = (wi,1, wi,2, ..., wi,n)

\bfT , i \in \{ 1, ..., k\} , m =
kn, and \bfx i = (xi,1, xi,2, ..., xi,n)

\bfT . Hence, \bfW \bfT \bfx , as the key
computation bottleneck in the inference phase, can be simplified
as below:

\bfW \bfT \bfx =

k\sum 
i=1

\bfC i\bfx i =

k\sum 
i=1

IFFT
\bigl( 
FFT(\bfw i) \circ FFT(\bfx i)

\bigr) 
(3)

where FFT, IFFT, and \circ represent a Fast Fourier transform
(FFT), an inverse FFT, and an element wise multiplication,
respectively. This “FFT \rightarrow component-wise multiplication \rightarrow 
IFFT" procedure to implement \bfW \bfT \bfx shown in Fig. 2 is derived
from the circular convolution theorem [24], [25]. The overall
computational complexity in this FC layer will be O(n \mathrm{l}\mathrm{o}\mathrm{g} n),
achieving a significant reduction compared to O(n2) when
calculating \bfW \bfT \bfx directly. In order to store the weights for the
inference phase, we can simply keep the FFT result FFT(\bfw i)
(which is a vector) instead of the whole matrix \bfW , thereby
reducing the storage complexity to O(n) for an FC layer.
Algorithm 1 summarizes the FFT-based inference algorithm.

Besides the inference procedure, the reformulated training
(weight updating) algorithm in the scenario of using block-
circulant matrices will also result in significant accelerations.
We denote \bfa = \bfW \bfT \bfx + \theta = (\bfa 1| \bfa 2| ...| \bfa k)\bfT and \bfa i =

For general values of m and n, we can apply zero padding such that the
definition of block-circulant matrices can be applied.

Algorithm 1: Block-circulant Matrix-based Inference
Input: w, x,m, n
Output: a
sa\leftarrow max(m,n);
si\leftarrow min(m,n);
k \leftarrow \lceil sa/si\rceil ;
partition w into k vectors, w1, . . . , wk;
if m > n then

for i\leftarrow 0 until k do
a \leftarrow a + ifft(fft(\bfw \bfi ) \circ fft(x));

end
else

partition x into k vectors, x1, . . . , xk;
for i\leftarrow 0 until k do

a \leftarrow a + ifft(fft(\bfw \bfi ) \circ fft(xi));
end

end
return a;

(ai,1, ai,2, ..., ai,n)
\bfT , then the weight updating rule for the

block-circulant FC layer is given by:

\bfw i \leftarrow \bfw i  - \epsilon \cdot IFFT
\Bigl( 

FFT
\bigl( \partial L
\partial \bfa i

\bigr) 
\circ FFT(\bfx \prime 

i)
\Bigr) 
\cdot \bfI (4)

where J , \bfI , \epsilon , and \bfx \prime 
i represent the loss function, an all-one

column vector, the learning rate, and the base vector that
defines the circulant matrix \partial \bfa i

\partial \bfw i
(which is formally derived),

respectively. Notice that since \partial \bfa i

\partial \bfw i
is a circulant matrix,

similar to inference, we can utilize the “FFT\rightarrow component-wise
multiplication\rightarrow IFFT" procedure to accelerate the matrix-vector
multiplication. The computational complexity will be O(n \mathrm{l}\mathrm{o}\mathrm{g} n)
in each updating step in this layer, which is a significant
reduction from O(n2) in traditional backpropagation procedure.
Algorithm 2 summarizes the FFT-based training algorithm.

B. Block-Circulant Matrix-Based Inference and Training Algo-
rithms for CONV Layer

The use of block-circulant matrices can also enable signif-
icant reduction in computational and storage complexities of
the Convolutional layer. The Convolutional layers are often
associated with multiple input and output feature maps in
DNNs. Therefore, the computation of the Convolutional layer
is described using tensor format as follows:

\scrY (x, y, p) =
r\sum 

i=1

r\sum 
j=1

C\sum 
c=1

\scrF (i, j, c, p)\scrX (x+ i - 1, y+ j - 1, c),

(5)
where \scrX \in \BbbR W\times H\times C , \scrY \in \BbbR (W - r+1)\times (H - r+1)\times P , \scrF \in 
\BbbR r\times r\times C\times P denote the input, output, and weight “tensors" of

} }

x

FFT(w) Pre-calculated

FFT( x ) IFFT(FFT(w)   FFT( x )

y

Fig. 2. The “FFT \rightarrow component-wise multiplication \rightarrow IFFT" procedure.



Algorithm 2: Block-circulant Matrix-based Training

Input: \partial L
\partial a , w, x,m, n

Output: \partial L
\partial w , \partial L

\partial x
sa\leftarrow max(m,n);
si\leftarrow min(m,n);
k \leftarrow \lceil sa/si\rceil ;
partition w into k vectors, w1, . . . , wk;
partition \partial L

\partial w into k vectors, \partial L
\partial w1

, . . . , \partial L
\partial wk

;
if m > n then

partition \partial L
\partial a into k vectors, \partial L

\partial a1
, . . . , \partial L

\partial ak
;

for i\leftarrow 0 until k do
\partial L
\partial wi
\leftarrow ifft(fft(\partial L\partial a ) \circ fft(\bfx \prime )) \cdot \bfone ;

\partial L
\partial x \leftarrow 

\partial L
\partial x + ifft(fft(\partial L\partial a ) \circ fft(\bfw \prime 

\bfi ));
end

else
partition x into k vectors, x1, . . . , xk;
partition \partial L

\partial x into k vectors, \partial L
\partial x1

, . . . , \partial L
\partial xk

;
for i\leftarrow 0 until k do

\partial L
\partial wi
\leftarrow ifft(fft(\partial L\partial a ) \circ fft(\bfx \prime 

\bfi )) \cdot \bfone ;
\partial L
\partial xi
\leftarrow ifft(fft(\partial L\partial a ) \circ fft(\bfw \prime 

\bfi ));
end

end
return \partial L

\partial w , \partial L
\partial x ;

the Convolutional layer, correspondingly. C is the number of
input maps. W and H are the spatial dimensions of the input
maps. P is the total number of output maps, and r is the size
of the convolutional kernel.

We generalize the “block-circulant structure" as rank-4
tensor (\scrF ) in the Convolutional layer, i.e., each slice \scrF (\cdot , \cdot , i, j)
is a circulant matrix. Then, we reformulate the inference and
training algorithms of the Convolutional layer to matrix-based
operations.

In the Convolutional layer, to enhance the implementation
efficiency, software tools provide an efficient approach of
changing tensor-based operations to matrix-based operations
equivalently [26], [27]. Fig. 3 demonstrates the application
of the method to reformulate Eqn. (3) to the matrix mul-
tiplication \bfY = \bfX \bfF , where \bfX \in \BbbR (W - r+1)(H - r+1)\times Cr2 ,
\bfY \in \BbbR (W - r+1)(H - r+1)\times P , and \bfF \in \BbbR Cr2\times P .
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Fig. 3. Reformulation of Eqn. (3) to matrix multiplication.

Based on the reshaping principle between \scrF and \bfF , we
have:

fa+C(i - 1)+Cr(j - 1),b = fC(i - 1)+Cr(j - 1),b - a,\forall a, b (6)

Architecture 
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Parameters 
Parser

Inference 
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Java/C++ Interface
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Parser

Architecture

Parameters

Inputs
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OpenCV 
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Fig. 4. Building blocks of software implementation.

where \bfF is a block-circulant matrix. Therefore, the
“FFT\rightarrow component-wise multiplication \rightarrow IFFT" procedure can
be applied to accelerate \bfY = \bfX \bfF , leading to the acceleration
of (3). With the assist of the proposed approach, the compu-
tational complexity for (3) is reduced from O(WHr2CP ) to
O(WHQ \mathrm{l}\mathrm{o}\mathrm{g}Q), where Q = \mathrm{m}\mathrm{a}\mathrm{x}(r2C,P ).

V. SOFTWARE IMPLEMENTATION

In this section, we provide detailed explanation of our
software implementation, experimental setup, and evaluation
of the proposed inference framework on various Android-
based platforms with embedded processors and various datasets.
The purpose of this software implementation is to reveal the
potential of embedded systems in running real time applications
that involve deep neural networks.

The software implementation of proposed inference frame-
work for Android-based platforms is comprised of four high-
level modules. The first module is responsible for constructing
the network architecture. The second module reads a file that
contains trained weights and biases. The third module loads test
data that consists of input features and predefined classification
labels, and finally, the fourth module performs inference for
predicting labels. Fig. 4 depicts these high-level building blocks
of the software implementation, along with their interactions.
It should be noted that the test data may be loaded from a file,
camera, etc.

We utilize the OpenCV[28] as core computing library in
our project. OpenCV is an open-source cross-platform library
of programming functions that is mainly targeted for computer
vision applications and includes efficient implementation of
aforementioned operations. OpenCV is written in C++, and it
provides the API (Application Program Interface) for both
C++and Java. We implement two versions of software for
inference: one that uses OpenCV’s Java API, which is more
convenient for Android development, and another one that is
developed in C++ using Android NDK (Native Development
Kit), uses OpenCV’s C++ API, and is expected to have a better
performance.

A. Experimental Setup

We run the inference application on various platforms of
different generations in order to evaluate the applicability of
the inference on embedded systems. Table I summarizes the
specifications of test platforms.

The OpenCV Manager is installed on all target platforms in
order to link OpenCV libraries dynamically and reduce memory
usage. Additionally, hardware specific optimizations are applied
by OpenCV Manager for an application’s supported platforms.



TABLE I. PLATFORMS UNDER TEST AND THEIR SPECIFICATIONS.

Platform Android Primary CPU Companion CPU CPU Architecture GPU RAM (GB)

LG Nexus 5 6 (Marshmallow) 4 \times 2.3\mathrm{G}\mathrm{H}\mathrm{z} Krait 400 - ARMv7-A Adreno 330 2
Odroid XU3 7 (Nougat) 4 \times 2.1\mathrm{G}\mathrm{H}\mathrm{z} Cortex-A15 4 \times 1.5\mathrm{G}\mathrm{H}\mathrm{z} Cortex-A7 ARMv7-A Mali T628 2
Huawei Honor 6X 7 (Nougat) 4 \times 2.1\mathrm{G}\mathrm{H}\mathrm{z} Cortex-A53 4 \times 1.7\mathrm{G}\mathrm{H}\mathrm{z} Cortex-A53 ARMv8-A Mali T830 3

In order to standardize the evaluation process on all
platforms, the airplane mode is switched on to eliminate
telecommunication overhead; all other running applications
are closed to ensure they do not affect runtime; and the device
is plugged in to avoid performance throttling applied by a
platform’s governor. Though this is the standard setup, we will
study the performance of inference process in situations where
the device is running on its battery.

B. MNIST

MNIST dataset [29] is a handwritten digits dataset which
includes 28\times 28 greyscale images with 60,000 images for
training and 10,000 images for testing. The original images in
the MNIST dataset are resized using a bilinear transformation,
and such transformation is used for both training and testing.
Various neural network architectures are explored for each
dataset and a few of them are presented in this paper.

For the MNIST dataset, two different neural network
architectures are evaluated. In the first architecture (Arch. 1),
the input layer consists of 256 neurons that represent the resized
MNIST images. The next two layers comprise of 128 neurons
each and are based on block-circulant matrix based FC layers.
Finally, the last layer is a softmax layer that consists of 10
neurons representing the ten possible predictions for the digits.
The second architecture (Arch. 2) has 121 neurons in the
input layer, 64 neurons in the two hidden layers, and similar to
Arch. 1, a softmax layer as the output layer. Table II summarizes
the runtime of each round of inference process using these
architectures and on various mobile platforms.

TABLE II. CORE RUNTIME OF EACH ROUND OF INFERENCE FOR
RESIZED MNIST IMAGES.

Architecture Implementation Accuracy (%) Runtime (µ\mathrm{s} per image)

Nexus 5 XU3 Honor 6X

Arch. 1 Java 95.47 359.6 294.1 256.7

C++ 95.47 140.0 122.0 101.0

Arch. 2 Java 93.59 350.9 278.2 221.7

C++ 93.59 128.5 119.1 98.5

Based on the results summarized in Table II, the C++ imple-
mentation is about 60-65% faster than the Java implementation.
One of the reasons for this superior performance is related to
memory limitations and management policy in Android. While
applications written in C++ have an unlimited heap size, Java
applications are restricted to platform-specific heap sizes. As a
result, a constraint is imposed on the amount of data that an
application written in Java can deal with at each instance of
time.

Another potential reason that may explain the considerable
performance difference between the two implementations is
the overhead due to switching from Java to C++ and vice versa.
Because the OpenCV library is written in C++, it needs to covert
data from C++ data types to Java data types whenever the Java
API is used. We believe that these conversions do not affect
the runtime significantly, but can cause certain difference in
performance across the two implementations.

Considering different architectures mentioned in Table II,
one can observe that going from the smaller network to a bigger
network increases the accuracy by about 2% while it increases
the memory required for storing parameters by a factor of about
two and increases the runtime of Java and C++ implementations
by about 2% and 9%, respectively. It should be noted that when
the device is running on its battery, the runtime will increase by
about 14% in the Java implementation, but remains unchanged
in the C++ implementation.

C. CIFAR-10

The CIFAR-10 [30] dataset contains 32\times 32 color images
from 10 classes, where there are 50,000 training images
and 10,000 testing images. The structure of deep neural
network can be denoted as 128x3x32x32-64Conv3-64Conv3-
128Conv3-128Conv3-512F-1024F-1024F-10F (Arch. 3). Here
128x3x32x32 represents that (i) the batch size is 128; (ii) the
number of input channel is 3, (iii) and the feature size of input
data is 32x32. In addition, 128Conv3 indicates that 128 3x3
convolutional filters are used in the convolutional layer. In
addition, 512F or 10F means that the number of neurons in
the FC layer is 512 or 10, respectively. In addition, both the
original and compressed models are trained with learning rate
0.001 and momentum 0.9. In this network architecture, the first
two convolutional layers are traditional convolutional layers (no
block circulant, which is treated as preprocessing similar to the
IBM TrueNorth paper [31]). Based on the results summarized
in Table III, the C++ implementation is about 130% faster than
the Java implementation.

TABLE III. CORE RUNTIME OF EACH ROUND OF INFERENCE PROCESS
FOR CIFAR-10 IMAGES.

Architecture Implementation Accuracy (%) Runtime (µ\mathrm{s} per image)

XU3 Honor 6X

Arch. 3 Java 80.2 21032 19785

C++ 80.2 8912 8244

D. Comparison Results on Performance and Accuracy

In this section, we provide comprehensive comparison
results on MNIST, CIFAR-10, and IBM TrueNorth [31], [32].
Our test platform consists of one or two qual-core ARM, while
the IBM TrueNorth includes 4,096 ASIC cores, which is around
500-1000 times more than our testing platform. In Fig. 5,
compared with IBM TrueNorth results on MNIST [32], our
model performs 10\times faster than IBM TrueNorth with a little
accuracy reduction on the best device result. The accuracy
for IBM TrueNorth is 95% and the runtime is 1000µ\mathrm{s} per
image on MNIST. Compared with IBM TrueNorth results on
CIFAR-10 [31], with 500-1000 times less cores, our model
performs 10\times slower than IMB TrueNorth. The accuracy for
IBM TrueNorth is 83.41% and the runtime is 800µ\mathrm{s} per image.
We can see that the later work [31] in 2016 on CIFAR-
10 is optimized more efficiently compared with the former
work [32] in 2015. Although our mobile phone based framework
achieves lower performance compared with IBM TrueNorth
on CIFAR-10, it is still reasonably good result considering the
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Fig. 5. Performance vs. accuracy results comparison on the MNIST and
CIFAR-10 benchmarks.

dramatic difference in computational resources. These results
have demonstrated the effectiveness of the proposed framework.

VI. CONCLUSIONS

This paper presented a design optimization framework for
Fast Fourier Transform-based deep neural network inference on
embedded system. The proposed approach results in significant
reduction in storage requirement for model parameters and
improves runtime without affecting accuracy significantly. Our
implementation on ARM-based embedded systems achieves
runtime improvement on image classification tasks compared
to IBM TrueNorth.
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