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Abstract—Automatic decision-making approaches, such as re-
inforcement learning (RL), have been applied to (partially)
solve the resource allocation problem adaptively in the cloud
computing system. However, a complete cloud resource allocation
framework exhibits high dimensions in state and action spaces,
which prohibit the usefulness of traditional RL techniques. In
addition, high power consumption has become one of the critical
concerns in design and control of cloud computing systems, which
degrades system reliability and increases cooling cost. An effective
dynamic power management (DPM) policy should minimize
power consumption while maintaining performance degradation
within an acceptable level. Thus, a joint virtual machine (VM)
resource allocation and power management framework is critical
to the overall cloud computing system. Moreover, novel solution
framework is necessary to address the even higher dimensions
in state and action spaces.

In this paper, we propose a novel hierarchical framework for
solving the overall resource allocation and power management
problem in cloud computing systems. The proposed hierarchical
framework comprises a global tier for VM resource allocation to
the servers and a local tier for distributed power management of
local servers. The emerging deep reinforcement learning (DRL)
technique, which can deal with complicated control problems
with large state space, is adopted to solve the global tier
problem. Furthermore, an autoencoder and a novel weight
sharing structure are adopted to handle the high-dimensional
state space and accelerate the convergence speed. On the other
hand, the local tier of distributed server power managements
comprises an LSTM based workload predictor and a model-free
RL based power manager, operating in a distributed manner.
Experiment results using actual Google cluster traces show
that our proposed hierarchical framework significantly saves
the power consumption and energy usage than the baseline
while achieving no severe latency degradation. Meanwhile, the
proposed framework can achieve the best trade-off between
latency and power/energy consumption in a server cluster.

Keywords—Deep reinforcement learning; hierarchical frame-
work; resource allocation; distributed algorithm

I. INTRODUCTION

Cloud computing has emerged as the most popular com-
puting paradigm in today’s computer industry. Cloud comput-
ing with virtualization technology enables computational re-
sources (including CPU, memory, disk, communication band-
width, etc.) in data centers or server clusters to be shared by
allocating virtual machines (VMs) in an on-demand manner.
∗Ning Liu, Zhe Li and Jielong Xu contributed equally to this work

The effective adoption of VMs in data centers is one of the
key enablers of the large-scale cloud computing paradigm. To
support such a feature, an efficient and robust scheme of VM
allocation and management is critical. Due to the time-variance
of workloads [1,2], it is desirable to perform cloud resource
allocation and management in an online adaptive manner.
Automatic decision-making approaches, such as reinforcement
learning (RL) [3], have been applied to (partially) solve the
resource allocation problem in the cloud computing system [4–
6]. Key properties of RL-based methods are suitable for the
cloud computing systems because they do not require a priori
modeling of state transition, workload, and power/performance
of the underlying system, i.e., they are essentially model-
free. Instead, the RL-based agents learn the optimal resource
allocation decision and control the system operation in an
online fashion as the system runs.

However, a complete resource allocation framework in the
cloud computing systems exhibits high dimensions in state and
action spaces. For example, a state in the state space may be
the Cartesian product of characteristics and current resource
utilization level of each server (for hundreds of servers) as
well as current workload level (number and characteristics of
VMs for allocation). An action in the action space may be the
allocation of VMs to the servers (a.k.a. physical machines)
and allocating resources in the servers for VM execution.
The high dimensions in state and action spaces prohibit the
usefulness of traditional RL techniques to the overall cloud
computing system in that the convergence speed of traditional
RL techniques is in general proportional to the number of
state-action pairs [3] and will be impractically long with high
state and action dimensions. As a result, previous works only
used RL to dynamically adjust the power status of a single
physical server [7] or the number of homogeneous VMs to
an application [5,8], in order to restrict the state and action
spaces.

In addition, power consumption has become one of the
critical concerns in design and control of cloud computing
systems. High power consumption degrades system reliability
and increases the cooling cost for high-performance systems.
Dynamic power management (DPM), defined as the selective
shut-off or slow-down of system components that are idle
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or underutilized, has proven to be an effective technique for
reducing power dissipation at system level [9]. An effective
DPM policy should minimize power consumption while main-
taining performance degradation to an acceptable level. The
design of such DPM policies has been an active research
area, while a variety of adaptive power management tech-
niques including machine learning have been applied [9–11].
The DPM policies have mainly been applied to the server
level, and therefore depend on the results of VM resource
allocations. Therefore, a joint VM resource allocation and
power management framework, which targets at the whole
data center or server cluster, would be critical to the overall
cloud computing system. And obviously, the joint management
framework exhibits even higher dimensions in state and action
spaces and requires a novel solution framework.

Recent breakthroughs of deep reinforcement learning (DRL)
in AlphaGo and playing Atari set a good example in handling
large state space of complicated control problems [12,13], and
could be potentially utilized to solve the overall cloud resource
allocation and power management problem. The convolutional
neural network, one example of deep neural networks (DNN),
was used to effectively extract useful information from high-
dimensional image input and build a correlation between
each state-action pair (s, a) and the associated value function
Q(s, a), which is the expected accumulative rewards (or costs)
that the agent aims to maximize (or minimize) in RL. For
online operations, a deep Q-learning framework was also
proposed to derive the optimal action a at each state s in
order to maximize (or minimize) the corresponding Q(s, a)
value. Although promising, both the DNN and the deep Q-
learning framework need to be modified for applications in
cloud resource allocation and power management. Moreover,
the DRL framework requires a relatively low-dimensional
action space [13] because in each decision epoch the DRL
agent needs to enumerate all possible actions at current state
and perform inference using DNN to derive the optimal
Q(s, a) value estimate, which implies that the action space
in cloud resource allocation and power management needs to
be significantly reduced.

To fulfill the above objectives, in this paper we propose a
novel hierarchical framework for solving the overall resource
allocation and power management problem in cloud computing
systems. The proposed hierarchical framework comprises a
global tier for VM resource allocation to the servers and a
local tier for power management of local servers. Besides
the enhanced scalability and reduced state/action space dimen-
sions, the proposed hierarchical framework enables to perform
the local power managements of servers in an online and
distributed manner, which further enhances the parallelism
degree and reduces the online computational complexity.

The global tier of VM resource allocation exhibits large
state and action spaces, and thus the emerging DRL technique
is adopted to solve the global tier problem. In order to signif-
icantly reduce the action space, we adopt a continuous-time
and event-driven decision framework in which each decision
epoch coincides with the arrival time of a new VM request. In
this way the action at each decision epoch is simply the target
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Fig. 1. Illustration of the agent-environment interaction system.

server for VM allocation, which ensures that the available
actions are enumerable. Furthermore, an autoencoder [14] and
a novel weight sharing structure are adopted to handle the
high-dimensional state space and accelerate the convergence
speed, making use of the specific characteristics of cloud
computing systems. On the other hand, the local tier of server
power managements comprises a workload predictor and a
power manager. The workload predictor is responsible for
providing future workload predictions to facilitate the power
management algorithm, and we adopt the long short-term
memory (LSTM) network [15] due to its ability to capture
long-term dependencies in time-series prediction. Based on the
workload prediction results and the current information, the
power manager adopts the model-free RL technique to adap-
tively determine the suitable action for turning ON/OFF of the
servers in order for simultaneous reductions of power/energy
consumption and job (VM) latency.

Experiment results using actual Google cluster traces [16]
show that proposed hierarchical framework significantly save
the power consumption/energy usage than the baseline while
achieves similar average latency. In a 30-server cluster, with
95, 000 job requests, the proposed hierarchical framework can
save 53.97% power and energy consumptions. Meanwhile, the
proposed framework can achieve the best trade-off between
latency and power/energy consumption in a server cluster. In
the same case, the proposed framework gives the average per-
job latency saving with the same energy usage up to 16.16%,
and the average power/energy saving with the same latency
up to 16.20%.

II. BACKGROUND OF THE AGENT-ENVIRONMENT
INTERACTION SYSTEM AND CONTINUOUS-TIME

Q-LEARNING

A. Agent-Environment Interaction System

As shown in Fig. 1, the general agent-environment interac-
tion modeling (of both traditional RL and the emerging DRL)
consists of an agent, an environment, a finite state space S, a
set of available actions A, and a reward function: S×A→ R.
The decision maker is called the agent, and should be trained
as the interaction system runs. The agent needs to interact with
the outside, which is called the environment. The interaction
between the agent and the environment is a continual process.
At each decision epoch k, the agent will make decision ak
based on the current state sk of the environment. Once the



decision is being made, the environment would receive the
decision and make corresponding changes, and the updated
new state sk+1 of the environment would be presented to
the agent for making future decisions. The environment also
provides reward rk to the agent depending on the decision ak,
and the agent tries to maximize some notion of the cumulative
rewards over time. This simple reward feedback mechanism is
required for the agent to learn its optimal behavior and policy.

B. Continuous-Time Q-Learning for Semi-Markov Decision
Process (SMDP)

In the Q-learning procedure [17], a representative algorithm
in general RL, the agent aims to maximize a value function
Q(s, a), which is the expected accumulated (with discounts)
reward function when system starts at state s and follows
action a (and certain policy thereafter). Q(s, a) is given as:

Q(s, a) = E
[ ∫ ∞

t0

e−β(t−t0)r(t)dt

∣∣∣∣s0 = s, a0 = a

]
(1)

for continuous-time systems where r(t) is the reward rate
function and β is the discount rate. The Q(s, a) for discrete-
time systems can be defined similarly.

The Q-learning for SMDP is an online adaptive RL tech-
nique that operates in continuous time domain in an event-
driven manner [18], which could reduce the overheads as-
sociated with periodic value updates in discrete-time RL
techniques. Please note that the name of the technique has
the term “SMDP” ONLY because it is proven to achieve the
optimal policy under SMDP environment. In fact, it could be
utilized to non-stationary environments as well with excellent
results [19]. In Q-learning for SMDP, the definition of value
function Q(s, a) is continuous-time based and given in Eqn.
(1). At each decision epoch tk, the RL agent selects the action
ak using certain policy, e.g., the ε-greedy policy [20], similar
to discrete-time RL techniques. At the next decision epoch
tk+1 triggered by state transition, the value updating rule (from
the k-th estimate to the (k + 1)-th estimate) is given by the
following:

Q(k+1)(sk, ak)← Q(k)(sk, ak) + α ·
(1− e−βτk

β
r(sk, ak)+

max
a′

e−βτkQ(k)(sk+1, a
′)−Q(k)(sk, ak)

)
(2)

where Q(k)(sk, ak) is the value estimate at decision epoch tk,
r(sk, ak) is the reward function, τk is the sojourn time that
system remains in state sk before a transition occurs, α ≤ 1
is the learning rate, and β is discount rate.

III. SYSTEM MODEL AND PROBLEM STATEMENT

We consider a server cluster with M physical servers that
offer D types of resources with respect to the cloud resource
allocation and power management framework in this paper.
Usually, a server can be in active mode or sleep mode for
power saving. We denoteM as the set of physical servers, and
D as the set of resources. Fig. 2 provides an illustration of the

This work can be generally applied to multiple server clusters or an overall
data center.
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Fig. 2. Cloud resource allocation and power management framework,
comprising both the global tier and the local tier.
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Fig. 3. An example of job execution on a server when the server is active.

hierarchical cloud resource allocation and power management
framework, comprising a global tier and a local tier. A job
broker, controlled by the global tier in the proposed hierar-
chical framework, dispatches jobs that request resource for
processing to one of the servers in the cluster at its arrival time,
as shown in Fig. 2. Each server queues all assigned jobs and
allocates resources for them in a first-come-first-serve (FCFS)
manner. If a server has insufficient resource to process a job,
it waits until sufficient resource is released by completed jobs.
On the other hand, the local tier performs power management
and turns ON/OFF of each server, in a distributed manner.
Both the job scheduling and the local power management
will significantly affect the overall power consumption and
performance of the server cluster.

We demonstrate how jobs are executed on an active server
with only CPU resource usage in Fig. 3 as an example. Job
1 consumes 50% of CPU, while each of job 2 and 3 requires
40%. Job 1, 2 and 3 arrive at t1, t2 and t3, respectively, and
complete at t4, t5 and t6, respectively. We assume that the
server is in active mode at time 0. When job 1 and 2 arrive,
there are enough CPU resources so their requirements are
satisfied immediately. When job 3 arrives, it waits until the
job 1 is completed, and the waiting time is t4 − t3. The job
latency is defined as the duration between the job arrival and
completion. Therefore the latency of job 3 is t6 − t3, which
is longer than the job duration. To reduce the job latency,
the job broker should avoid overloading servers. A scheduling
scheme must be developed for dynamically assigning the jobs
to servers and allocating resources in each server.

When a job is assigned to a server in sleep mode, it takes
Ton time to change the server into the active mode. Similarly,
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(a) Power Management in ad hoc manner

t1 t2 t3 t′4
0

P (0%)

P (100%)

Job 1
P (50%)

Job 2
P (70%)

t1 + Ton t2 + Ttimeout t
′
4 + Ttimeout

t′4 + Ttimeout + Toff

time

Power Usage

(b) Power Management with DPM technique

Fig. 4. Illustration of the effectiveness of server power management in the
local tier.

it takes Toff time to change the server back to the sleep mode,
which decision is made by the local tier of power manager (in
a distributed manner). We assume the power consumption of
a server in the sleep mode is zero, and the power consumption
of a server at time t in the active mode is a function of the
CPU utilization [21],

P (xt) = P (0%) + (P (100%)− P (0%))(2xt − x1.4t ) (3)

where xt denotes the CPU utilization of the server at time t,
P (0%) denotes the power consumption of the server in the
idle mode, and P (100%) denotes the power consumption of
the server in full load. In general, the power consumption of
the server during the sleep to active transition is higher than
P (0%) [21,22].

We explain the effectiveness of power management in the
local tier by Fig. 4. Assume that at time 0 the server is
in the sleep mode, and the arrival times and CPU resource
utilizations of Jobs 1 and 2 are < t1, 50% > and < t3,
70% >, respectively. Job 1’s arrival triggers the server to
switch to the active mode and start serving job 1 from t1+Ton
to t2. Fig. 4 (a) illustrates the case when power management
is performed in an ad hoc manner. In this case, the server
turns back to the sleep mode from t2, and the expected
completion time of power mode switching is t2 + Toff, which
is later than the arrival time of job 2 (t3). Thus the server
switches back to active mode immediately after t2 + Toff. At
t2 + Toff + Ton, the server starts serving job 2 and completes
at time t4. In this case, a portion of power consumption is
wasted on the frequent turning ON/OFF of the server, and
also extra latency is incurred on job 2. On the other hand,
Fig. 4 (b) illustrates the case when effective DPM technique
is in place. In this case, an effective timeout is set after
time t2 and the server will stay in the idle state. If job 2
arrives before the timeout expires, the server will process job

System
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ActionCurrent
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Fig. 5. Power management at each local server, comprising the workload
predictor and the power manager.

2 immediately and finish at an earlier time t′4, with t′4 < t4.
A simultaneous reduction in power/energy consumption and
average job latency could be achieved through the effective
DPM technique at the server level, and the DPM technique
for each server could be performed in a distributed manner.

The effective DPM technique in the local tier properly
determines the most desirable timeout values in an online
adaptive manner, based on the VM allocation results from
the global tier. The DPM framework at the local server level
is illustrated in Fig. 5. A workload predictor is incorporated
in the DPM framework, which is critical to the performance
of DPM by providing predictions of future workloads for
the power manager. The prediction together with the current
information such as the number of pending jobs in the queue is
fed into the power manager, and serve as the state of the power
manager for selecting corresponding actions and learning in
the observation domain of the system.

The DPM framework of local servers relies heavily on a
confident workload prediction and a properly designed power
manager. In [19], a Naı̈ve Bayes classifier is adopted to
perform the workload prediction. In this paper, we want to
perform a more accurate (time-series) prediction with con-
tinuous values, and thus a recurrent neural network (RNN)
[23] or even a long short-term memory (LSTM) network [15]
becomes a good candidate for the workload predictor. With
accurate prediction and current information of the system
under management, the power manager has to derive the most
appropriate actions (timeout values) to help simultaneously
reduce the power consumption of the server and the job
latency, and the model-free RL technique [19,24] serves as a
good candidate for the adaptive power management algorithm.

In Sections V and VI, we will describe the global and
local tiers of the overall cloud resource allocation and power
management framework. The global tier of cloud resource
(VM) allocation exhibits high dimensions in state and action
spaces, which prohibit the usefulness of traditional RL tech-
niques. This is because the convergence speed of traditional
RL techniques is in general proportional to the number of
state-action pairs [3]. Therefore, we adopt the emerging DRL



technique [13], which has the potential of handling large state
space of complicated control problems, to solve the global
tier problem. For the local tier of power management, we
adopt a model-free RL-based DPM technique integrated with
an effective workload predictor using the LSTM network.

IV. OVERVIEW OF DEEP REINFORCEMENT LEARNING

In this section, we present a generalized form of DRL
technique compared with the prior work, which could be
utilized for resource allocation and other problems as well. The
DRL technique is comprised of an offline DNN construction
phase and an online deep Q-learning phase [13,25]. The offline
phase adopts DNN to derive the correlation between each
state-action pair (s, a) of the system under control and its value
function Q(s, a). The offline DNN construction phase needs
to accumulate enough samples of Q(s, a) value estimates
and corresponding (s, a) for constructing an enough accurate
DNN, which can be a model-based procedure or from actual
measurement data [12,26]. For the game playing applications
[13], this procedure includes the pre-processing of game
playing profiles/replays and obtaining the state transitioning
profile and Q(s, a) value estimates (e.g., win/lose or the score
achieved). For the cloud resource allocation applications, we
will make use of the real job arrival traces to obtain enough
state transitioning profiles and Q(s, a) value estimates, which
can be a composite of power consumption, performance (job
latency), and resiliency metrics, for the DNN construction.
Arbitrary policy and gradually refined policy can be applied
in this procedure. The transition profiles are stored in an ex-
perience memory D with capacity ND. The use of experience
memory can smooth out learning and avoid oscillations or
divergence in the parameters. [13]. Based on the stored state
transition profiles and Q(s, a) value estimates, the DNN is
constructed with weight set θ trained using standard training
algorithms [27].

We summarize the key steps in the offline procedure, which
are shown in line 1-4 in Algorithm 1.

The deep Q-learning technique is adopted for the online
control based on the offline-trained DNN. More specifically,
at each decision epoch tk of an execution sequence, the system
under control is in a state sk. The DRL agent performs infer-
ence using the DNN to derive the Q(sk, a) estimate of each
state-action pair (sk, a), and uses ε-greedy policy to derive
the action with the highest Q(sk, a) with probability 1 − ε
and choose the other actions randomly with total probability
ε. The chosen action is denoted by ak. At the next decision
epoch tk+1, the DRL agent performs Q-value updating based
on the total reward (or cost) rk(sk, ak) observed during this
time period [tk, tk+1). At the end of the execution sequence,
the DRL agent updates the DNN using the newly observed Q-
value estimates, and the updated DNN will be utilized in the
next execution sequence. More detailed procedures are shown
in Algorithm 1.

It can be observed from the above procedure that the DRL
framework is highly scalable for large state space and could
deal with the case of continuous state space, which is distinct
from traditional RL techniques. On the other hand, the DRL

Algorithm 1 Illustration of the General DRL Framework
Ensure:

1: Extract real data profiles using certain control policies
and obtain the corresponding state transition profiles and
Q(s, a) value estimates;

2: Store the state transition profiles and Q(s, a) value esti-
mates in experience memory D with capacity ND;

3: Iterations may be needed in the above procedure;
4: Pre-train a DNN with features (s, a) and outcome Q(s, a);

Require:
5: for each execution sequence do
6: for at each decision epoch tk do
7: With probability ε select a random action, otherwise

ak = argmaxaQ(sk, a), in which Q(sk, a) is
derived (estimated) from DNN;

8: Perform system control using the chosen action;
9: Observe state transition at next decision epoch tk+1

with new state sk+1, receive reward rk(sk, ak) during
time period [tk, tk+1);

10: Store transition (sk, ak, rk, sk+1) in D;
11: Updating Q(sk, ak) based on rk(sk, ak) and

maxa′ Q(sk+1, a
′) based on Q-learning updating

rule;
12: end for
13: Update DNN parameters θ using new Q-value esti-

mates;
14: end for

framework requires a relatively low-dimensional action space
because in each decision epoch the DRL agent needs to
enumerate all possible actions at current state and perform
inference using DNN to derive the optimal Q(s, a) value
estimate, which implies that the action space in the cloud
resource allocation framework needs to be reduced.

V. THE GLOBAL TIER OF THE HIERARCHICAL
FRAMEWORK – DRL-BASED CLOUD RESOURCE

ALLOCATION

In this paper, we develop a scalable hierarchical framework
for the overall cloud resource allocation and power manage-
ment problem, comprising a global tier of cloud VM resource
allocation and a local tier of power managements. The global
tier adopts the emerging DRL technique to handle the high-
dimensional state space in the VM resource allocation frame-
work. In order to significantly reduce the action space, we
adopt a continuous-time and event-driven decision framework
in which each decision epoch coincides with the arrival time
of a new VM (job) request. In this way the action at each
decision epoch is simply the target server for VM allocation,
which ensures that the available actions are enumerable at
each epoch. The continuous-time Q-learning for SMDP [18] is
chosen as the underlying RL technique in the DRL framework.

In the following we present the proposed DRL-based global
tier of cloud resource allocation including novel aspects both
in the offline and online phases.



A. DRL-based Global Tier of Resource Allocation

In the DRL-based global tier of cloud resource allocation,
the job broker is controlled by the DRL agent, and the server
cluster is the environment. The DRL-based cloud resource
allocation framework is continuous-time based and event-
driven, in that the DRL agent selects an action at the time
of each VM (job) request arrival, i.e., a decision epoch. The
state space, action space, and reward function of the DRL-
based global tier of resource allocation are defined as follows:

State Space: In the DRL-based resource allocation, we
define the state at job j’s arrival time tj , stj , as the union
of the server cluster state at job j’s arrival time stjc and the
job j’s state sj , i.e., stj = s

tj
c ∪ sj . All the M servers can

be equally divided into K groups, G1, · · · , GK . We define the
state of servers in group Gk at time t as gtk. We also define the
utilization requirement of resource type p of job j by ujp, and
the utilization level of server m at time t as utmp. Therefore, the
system state stj of the DRL-based cloud resource allocation
tier can be represented using ujp’s and utjmp’s as follows:

stj =
[
stjc , sj

]
=
[
g
tj
1 , · · · , g

tj
K , sj

]
= [u

tj
11, · · · , u

tj
1|D|, · · · , u

tj
|M ||D|, uj1, · · · , uj|D|, dj ],

where dj is the (estimated) job duration. The state space
consists of all possible states and has a high dimension.

Action space: The action of the DRL agent for cloud
resource allocation is defined as the index of server for VM
(job) allocation. The action space for a cluster with M servers
is defined as follows.

A = {a|a ∈ {1, 2, · · · , |M |}}

It can be observed that the action space is significantly reduced
(to the same size as the total number of servers) by using an
event-driven and continuous-time DRL-based decision frame-
work.

Reward: The overall profit of the server cluster equals to
the total revenue of processing all the incoming jobs minus
the total energy cost and the reliability penalty. The income
achieved by processing a job decreases with the increase in
job latency, including both waiting time in the queue and
processing time in the server. Hot spot avoidance is employed
in physical servers because the overloading situations can
easily lead to resource shortage and affect hardware lifetime,
and thereby undermining data center reliability. Similarly, for
the sake of reliability, a cloud provider can introduce anti co-
location objectives to ensure spatial distances between VMs
and the use of disjoint routing paths in the data center, so as to
prevent a single failure from affecting multiple VMs belonging
to the same cloud customer. It is clear that both load balancing
and anti-colocation objectives are partially in conflict with
power saving (and maybe job latency), as they actually try
to avoid the usage of high VM consolidation ratios. Through
a joint consideration of power consumption, job latency, and
reliability issues, we define the reward function r(t) that the

agent of the global tier receives as follows:

r(t) =− w1 · Total Power(t) (4)
− w2 ·Number VMs(t)− w3 ·Reli Obj(t),

where the three terms are the negatively weighted values of
instantaneous total power consumption, number of VMs in the
system, and reliability objective function value, respectively.
Please note that according to the Little’s Theorem [28], the
average number of VMs pending in the system is proportional
to the average VM (job) latency. Therefore, the DRL agent of
the global tier optimizes a linear combination of total power
consumption, VM latency, and reliability metrics when using
the above instantaneous reward function.

Offline DNN Construction: The DRL-based global tier of
cloud resource allocation comprises an offline DNN construc-
tion phase and an online deep Q-learning phase. The offline
DNN construction phase derives the correlation between Q
value estimates with each state-action pair (stj , a). A straight-
forward approach is to use a conventional feed-forward neural
network to directly output Q value estimates. This works well
with problems with relatively small state and action spaces
(e.g., in [13], the number of actions ranges from 2 to 18).
Alternatively, we can train multiple neural networks in which
each of them estimates the Q value for a subset of actions, for
example, the Q values for assigning the job j to one subset of
servers Gk. However, this procedure will significantly increase
the training time of the neural network, by up to a factor of
K, compared with the single network solution. Moreover, this
simple multiple neural networks method cannot well stress
the importance of the related servers of a target action, which
slows down the training process.

In order to address these issues, we harness the power of
representation learning and weight sharing for DNN construc-
tion, with basic procedure shown in Fig. 6. Specifically, we
first use an autoencoder to extract a lower-dimensional high-
level representation of server group state gtjk for each possible
k value, denoted by ḡtjk . Next, for estimating the Q value of the
action of allocating VM to servers in Gk, the neural network
Sub-Qk takes gtjk , sj and all ḡtjk′ (k′ 6= k) as input features.
The dimension difference between g

tj
k and ḡ

tj
k′ (k′ 6= k)

reflects the importance of the targeting server group’s own
state compared with the other server groups, which determines
the degree of reduction in the state space.

In addition, we introduce weight sharing among all K
autoencoders, as well as all Sub-Qk’s. Weight sharing has
been successfully applied to convolutional neural networks and
image processing [29]. It is used in our model due to following
reasons: 1) With weight sharing, any training samples can be
used to train the Sub-Qk’s and autoencoders, compared to the
case without weight sharing, where only the training samples
allocated to a server in Gk can be used to train Sub-Qk.
This usually leads to higher degree of scalability. 2) Weight
sharing reduces the total number of required parameters and
the training time.

Online Deep Q-Learning: The online deep Q-learning
phase, which is an integration of the DRL discussed in Section
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Fig. 6. Deep neural network for Q-value estimating with autoencoder and
weight sharing scheme (K = 2).

III and the Q-learning for SMDP, is utilized for action selection
and value function/DNN updating. At each decision epoch
tj , it performs inference using the DNN (with autoencoder
incorporated) to derive the Q(stj , a) value estimate of each
state-action pair (stj , a), and use ε-greedy policy for action
selection. At the next decision epoch tj+1, it performs value
updating using Eqn. (2) in Q-learning for SMDP. At the
end of each execution sequence, it updates the DNN with
autoencoders based on the updated Q value estimates.

B. Convergence and Computational Complexity Analysis of
the Global Tier

It has been proven that the Q-learning technique will grad-
ually converge to the optimal policy under stationary Markov
decision process (MDP) environment and sufficiently small
learning rate [17]. Hence, the proposed DRL-based resource
allocation framework will converge to the optimal policy
when (i) the environment evolves as a stationary, memoryless
SMDP and (ii) the DNN is sufficiently accurate to return the
action associated with the optimal Q(s, a) estimate. In reality,
the stationary property is difficult to satisfy as actual cloud
workloads are time-variant. However, simulation results will
demonstrate the effectiveness of the DRL-based global tier in
realistic, non-stationary cloud environments.

The proposed DRL-based global tier of resource allocation
exhibits low online computational complexity, i.e., the com-
putational complexity is proportional to the number of actions
(number of servers) at each decision epoch (upon arrival of
each VM), which is insignificant for cloud computing systems.

VI. THE LOCAL TIER OF THE HIERARCHICAL
FRAMEWORK – RL-BASED POWER MANAGEMENT FOR

SERVERS

In this section, we describe the proposed local tier of power
management in the hierarchical framework, which is respon-
sible for controlling the turning ON/OFF of local servers in
order to simultaneously reduce the power consumption and
the average job latency. The local tier includes the workload
predictor using the LSTM network and the adaptive power
manager based on the model-free, continuous-time Q-learning
for SMDP. Details will be described next.
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Fig. 7. Unrolled LSTM neural network for workload prediction at the local
server.

A. Workload Predictor Using the Long Short-Term Memory
(LSTM) Network

The workload predictor is responsible for providing partial
observation of the actual future workload characteristics (i.e.,
inter-arrival times of jobs) to the power manager, which will
be utilized for defining system states in the RL algorithm.
The workload characteristics of servers are in fact the result
of the global tier of VM resource allocation. Previous works
on workload prediction in [30,31] assume that a linear com-
bination of previous idle times (or request inter-arrival times)
may be used to infer the future ones, which is not always
true. For example, one very long inter-arrival time can ruin a
set of subsequent predictions. In order to overcome the above
effect and achieve much higher prediction accuracy, in this
work we adopt the LSTM neural network [15] for workload
prediction, which is a recurrent neural network architecture
and can be applied for prediction of time series sequences. The
LSTM network can eliminate the vanishing gradient problem
and capture the long-term dependencies in the time series,
and works efficiently where back propagation through time
(BPTT) technique is adopted [32].

The LSTM network structure is shown in Fig. 7. The
network has three layers, input hidden layer, LSTM cell layer
and output hidden layer. In the proposed LSTM network for
workload prediction, we predict the next job inter-arrival time
based on the past 35 inter-arrival times as the look-back time
steps. The size of both input and output of an LSTM cell
should be 1 according to the dimension of the measured trace.
We set 30 hidden units in each LSTM cell, and all LSTM cells
have shared weights. In our LSTM-based workload prediction
model, we discretize the output inter-arrival time prediction by
setting n predefined categories, corresponding to n different
states in the RL algorithm utilized in the power manager.

In the training process, first we initialize the weights for the
input layer and output layer as a normal distribution with a
mean value of 0 and standard deviation of 1. The bias for both
layers is set as a constant value 0.1. The initial state of LSTM
cell is set as 0 for all cells. In response to the back propagated
errors, the network is updated by adopting Adam optimization
[27], a method for efficient stochastic optimization that only
requires first-order gradients with little memory requirement.
The method computes individual adaptive learning rates from



estimates of the first and second moments of the gradients
[33]. The state of the LSTM cell and weights will be trained
for minimizing the propagated errors.

B. Distributed Dynamic Power Management for Local Servers

In this subsection, we describe the proposed adaptive power
manager for local servers using model-free RL, based on
effective workload prediction results. The continuous-time Q-
learning for SMDP is adopted as the RL technique in order
to reduce the decision frequency and overheads. The power
management for local servers is performed in a distributed
manner. First, we provide a number of key definitions and
notations. Let tGj (j = 1, 2, 3...) denote the time when the j-
th job (VM) arrives in the local machine. Suppose that we are
currently at time t with tGj ≤ t < tGj+1. Note that the power
manager has no exact information on tGj+1 at the current time
t. Instead, it only receives an estimation of inter-arrival time
from the LSTM-based workload predictor.

The power manager monitors the following state parameters
of the power managed system (server):

1) The machine power state M(t), which can be active,
idle, sleep, etc.

2) The estimated next job inter-arrival time from the work-
load predictor.

To apply RL techniques to DPM frameworks, we define
decision epochs, i.e., when new decisions are made and
updates for the RL algorithm are executed. In our case, the
decision epochs coincide with one of the following three cases:

1) The machine enters the idle state (usage = 0) and
JQ(t) = 0 (no waiting job in the buffer queue).

2) The machine is in the idle state and a new job arrives.
3) The machine is in the sleep state and a new job arrives.
The proposed RL-based DPM operates as follows. At each

decision epoch, the power manager finds itself in one of the
three aforesaid conditions and it will make a decision. If it
finds itself in case (1), it will use the RL-based timeout policy.
A list of timeout periods, including the immediate shutdown
(timeout value = 0), serve as the action set A in this case,
and the power manager learns to choose the optimal action by
using RL technique. If it is in case (2), it will start executing
the new job and turn from idle to active. If it is in case (3), the
server will turn active from the sleep state and start the new
job as soon as it is ready. Updates are no need to perform in
cases (2) and (3) because there is just one action to choose.
As pointed out in reference [34], the optimal policy when
the machine is idle for non-Markov environments is often a
timeout policy, wherein the machine is turned off to sleep if
it is idle for more than a specified timeout period.

In this local RL-based DPM framework, we use the reward
rate defined as follows:

r(t) = −wP (t)− (1− w)JQ(t) (5)

The reward rate function is the negative of a linearly-weighted
combination of power consumption P (t) of server and the
number of jobs JQ(t) buffered in the service queue, where
w is the weighting factor. This is a reasonable reward rate

because as authors in [35] has pointed out, the average number
of buffered service requests/jobs is proportional to the average
latency for each job, which is defined as the average time for
each job between the moment it is generated and the moment
that the server finishes processing it, i.e., it includes the
queueing time plus execution time. The above observation is
based on the Little’s Law [36]. In this way, the value function
Q(s, a) for each state-action pair (s, a) is a combination of
the expected total discounted energy consumption and total
latency experienced by all jobs. Since the total number of
jobs and the total execution time are fixed, the value function
is equivalent to a linear combination of the average power
consumption and average per-job latency. The relative weight
w between the average power consumption and latency can
be adjusted to obtain the power-latency trade-off curve. The
detailed procedure of the RL algorithm is in Algorithm 2.
Algorithm 2 The RL-based DPM framework in the local tier.

1: At each decision epoch tD, denote the RL state as s(tD)
for the power-managed system.

2: for each decision epoch tDk do
3: With probability ε select a random action from

action set A (timeout values), otherwise ak =
argmaxaQ(s(tDk ), a).

4: Apply the chosen timeout value ak.
5: If job arrives during the timeout period, turn active to

process the job until the job queue is empty. Otherwise
turn sleep until the next job arrives.

6: Then we arrive at the next decision epoch tDk+1.
7: Observe state transition at next decision epoch tDk+1

with new state s(tDk+1), and calculate reward rate during
time period [tDk , t

D
k+1).

8: Updating Q(s(tDk ), ak) based on reward rate and
maxa′ Q(s(tDk+1), a′) based on the updating rule of Q-
learning for SMDP (Eqn. (2)).

9: end for

VII. EXPERIMENTAL RESULTS

In this section, we first describe the simulation setup. Then,
from perspectives of power consumption and job latency we
compare our proposed hierarchical framework for resource
allocation and power management with the DRL-based frame-
work for resource allocation ONLY, and the baseline round-
robin VM allocation policy. Finally, we evaluate our proposed
framework by investigating the optimal trade-off between the
power consumption and latency.

A. Simulation Setups

Without loss of generality, in this paper, we assume a
homogeneous server cluster. The peak power of each server
is P (100%) = 145W, and the idle power consumption is
P (0%) = 87W [21]. We set the server power mode transition
times Ton = 30s and Toff = 30s. The number of machines in
each cluster M is set as 30, 40 respectively. Please note that
our proposed framework is applicable to the case with more
servers as well.



We use real data center workload traces from Google
cluster-usage traces [16], which provide the server cluster
usage data over a month-long period in May 2011. The
extracted job traces include job arrival time (absolute time
value), job duration, and resource requests of each job, which
include CPU, memory and disk requirements (normalized by
the resource of one server). All the extracted jobs are with a
duration between 1 minute and 2 hours, ordered increasingly
based on their arrival time. To simulate the workload on a
30-40 machines cluster, we split the traces into 200 segments,
and each segment contains about 100,000 jobs, corresponding
to the workload for a M -machine cluster in a week.

In this work, for the global tier, we perform offline training,
including the experience memory initialization and training
of the autoencoder, using the whole Google cluster traces.
To obtain DNN model in the global tier of the proposed
framework, we use workload traces for five different M -
machine clusters. We generate four new state transition profiles
using the ε-greedy policy [20] and store the transition profiles
in the memory before sampling the minibatch for training the
DNN. In addition, we clip the gradients to make their norm
values less than or equal to 10. The gradient clipping method
has been introduced to DRL in [37].

In DNN construction, we use two layers of fully-connected
Exponential Linear Units (ELUs) with 30 and 15 neurons,
respectively, to build an autoencoder. Each Sub-Qk mentioned
in Section V contains a single fully-connected hidden layer
with 128 ELUs, and a fully-connected linear layer with a
single output for each valid action in the group. The number of
groups varies between 2 and 4. We use β = 0.5 in simulations
for Q-learning discount rate.

B. Comparison with Baselines

We simulate five different one-week job traces using the
proposed hierarchical framework with different parameters and
compare the performance against the DRL-based resource
allocation framework and the round-robin allocation policy
(denoted as the baseline) in terms of the (accumulative) power
consumption and the accumulated job latency.

Fig. 8 shows the experimental results when the number of
machines in the cluster M = 30. Compared with the round-
robin method, the hierarchical framework and DRL-based
resource allocation result in longer latency than the baseline
round-robin method shown in Fig. 8(a). This is because in
the round-robin method jobs are dispatched evenly to each
machine, and generally, the jobs do not need to wait in each
machine job queue. However, from the perspective of energy
(accumulative power consumption) usage shown in Fig. 8(b),
the round robin method gives a larger increase rate than
the hierarchical framework or DRL-based resource allocation,
which implies the round robin method has a larger power
consumption. On the other hand, compared with the DRL-
based resource allocation, the proposed hierarchical framework
shows a reduced job latency shown in Fig. 8(a) as well as a
lower energy usage shown in Fig. 8(b). From Fig. 8(b), we can
also observe the energy chart for the proposed framework is
always lower than that for DRL-based resource allocation or

(a) Accumulated job latency versus the number of jobs

(b) Energy usage versus the number of jobs
Fig. 8. Comparison among the proposed hierarchical framework, the DRL-
based resource allocation framework, and the round-robin baseline in the case
of M = 30.

round robin baseline, which means our proposed hierarchical
framework achieves the lowest power consumption among
three. Shown in Table I, given the number of jobs of 95, 000,
compared with the round-robin method, our proposed hierar-
chical framework saves 53.97% power and energy. It also saves
16.12% power/energy and 16.67% latency compared with the
DRL-based resource allocation framework.

Similarly, in the case of 40 machines in the cluster as
shown in Table I, given the number of jobs of 95, 000, the
proposed hierarchical framework consumes 59.99% less power
and energy compared with round-robin baseline, as well as
17.89% less power and energy compared with the DRL-based
resource allocation framework. The latency of the hierarchical
framework reduces by 13.32% compared with the DRL-based

TABLE I
SUMMARY OF THE SERVER CLUSTER PERFORMANCE METRICS

(ACCUMULATED ENERGY, ACCUMULATED LATENCY, AND AVERAGE
POWER CONSUMPTION) WITH JOB NUMBER = 95000

Round-Robin Energy (kWh) Latency(106s) Power (W)
M = 30 441.47 85.20 2627.79
M = 40 561.13 85.20 3340.06

DRL-based Energy (kWh) Latency(106s) Power (W)
M = 30 242.25 109.73 1441.96
M = 40 273.41 108.76 1627.44

Hierarchical Energy (kWh) Latency(106s) Power (W)
M = 30 203.21 92.53 1209.58
M = 40 224.51 94.26 1336.37



(a) Accumulated job latency versus the number of jobs

(b) Energy usage versus the number of jobs
Fig. 9. Comparison among the proposed hierarchical framework, the DRL-
based resource allocation framework, and the round-robin baseline in the case
of M = 40.

resource allocation framework. From Fig. 8(a), 9(a), we can
observe that the corresponding hierarchical frameworks’ la-
tency increase rates in two figures differ very little and so as to
the corresponding DRL-based resource allocation frameworks.
In Fig. 8(b) and Fig. 9(b), the trend of energy usage of cor-
responding hierarchical frameworks and DRL-based resource
allocation frameworks remains close which means their power
consumption remains as the number of machines increases.
However, the increase rate of energy usage (power) for round-
robin methods becomes larger as the number of machines M
increases. Thus, when the number of jobs increases, in a larger-
size server cluster, the round robin baseline system consumes
an unacceptable amount of power/energy. These facts imply
that the DRL-based resource allocation framework is capable
of managing a large-size server cluster with an enormous
number of jobs. With the help of local and distributed power
manager, the proposed hierarchical framework achieves shorter
latency and less power/energy consumption.

C. Trade-off of Power/Energy Consumption and Average La-
tency

Next, we explore the power (energy) and latency trade-off
curves for the proposed framework as shown in Fig. 10. The
latency and energy usage are averaged for each job. We first
set three baselines with the DRL-based resource allocation tier
and the local tier with different fixed timeout values, which
is discussed in Section VI-B. The timeout values of the fixed

Fig. 10. Trade-off curves between average latency and average energy
consumption of the proposed hierarchical framework and baseline systems.

timeout baselines are set to be 30s, 60s, and 90s, respectively.
Please note when the timeout value is fixed, the baseline
system cannot reach every point in the energy and latency
space, so that the curves for baselines are not complete. We
can observe the proposed hierarchical framework can achieve
the smallest area against the axes of power and latency, which
denotes that our proposed hierarchical framework gives the
best trade-off than any of those with a fixed timeout value. For
instance, compared with a baseline with fixed timeout value
of 60, the maximum average latency saving with the same
energy usage is 14.37%, while the maximum power/energy
saving with the same average latency is 16.13%; compared
with a baseline with fixed timeout value of 90, the maximum
average latency saving with the same energy usage is 16.16%,
while the maximum average power/energy saving with the
same latency is 16.20%

VIII. CONCLUSION

In this paper, a hierarchical framework is proposed to solve
the resource allocation problem and power management prob-
lem in the cloud computing. The proposed hierarchical frame-
work comprises a global tier for VM resource allocation to the
servers and a local tier for power management of local servers.
Besides the enhanced scalability and reduced state/action
space dimensions, the proposed hierarchical framework en-
ables to perform the local power managements of servers
in an online and distributed manner, which further enhances
the parallelism degree and reduces the online computational
complexity. The emerging DRL technique is adopted to solve
the global tier problem while an autoencoder and a novel
weight sharing structure are adopted for acceleration. For local
tier, an LSTM based workload predictor helps a model-free RL
based power manager to determine the suitable action of the
servers. Experiment results using actual Google cluster traces
show that proposed hierarchical framework significantly save
the power consumption/energy usage than the baseline while
achieves similar average latency. Meanwhile, the proposed
framework can achieve the best trade-off between latency and
power/energy consumption in a server cluster.
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