
Model-Free Reinforcement Learning and
Bayesian Classification in System-Level

Power Management
Yanzhi Wang,Member, IEEE and Massoud Pedram, Fellow, IEEE

Abstract—To cope with uncertainties and variations that emanate from hardware and/or application characteristics, dynamic power

management (DPM) frameworks must be able to learn about the system inputs and environmental variations, and adjust the power

management policy on the fly. In this paper, an online adaptive DPM technique is presented based on the model-free reinforcement

learning (RL) method, which requires no prior knowledge of the state transition probability function and the reward function.

In particular, this paper employs the temporal difference (TD) learning method for semi-Markov decision process (SMDP) as the

model-free RL technique since the TD method can accelerate convergence and alleviate the reliance on the Markovian property of the

power-managed system. In addition, a novel workload predictor based on an online Bayesian classifier is presented to provide effective

estimation of the workload characteristics for the RL algorithm. Several improvements are proposed to manage the size of the action

space for the learning algorithm, enhance its convergence speed, and dynamically change the action set associated with each system

state. In the proposed DPM framework, power-latency tradeoffs of the power-managed system can be precisely controlled based on a

user-defined parameter. Extensive experiments on hard disk drives and wireless network cards show that the maximum power saving

without sacrificing any latency is 18.6 percent compared to a reference expert-based approach. Alternatively, the maximum latency

saving without any power dissipation increase is 73.0 percent compared to the existing best-of-breed DPM techniques.

Index Terms—Dynamic power management, reinforcement learning, supervised learning, Bayesian classification

Ç

1 INTRODUCTION

POWER consumption has become one of the critical road-
blocks in the design of electronic computing systems

nowadays. High power consumption degrades system reli-
ability, increases the cooling cost for high performance
embedded systems, and also reduces the battery service life
in portable devices. Dynamic power management (DPM),
which refers to the selective shut-off or slow-down of sys-
tem components that are idle or underutilized, has proven
to be an particularly effective technique for reducing
system-levelpower dissipations [1], [2]. An effective DPM
policy should maximize power savings while maintaining
the performance degradation within an acceptable level.
Design of such effective DPM policies has been an active
research area in the past decade.

Bona fide DPM frameworks should account for varia-
tions that originate from process, voltage, and temperature
(PVT) variations as well as current stress, device aging, and
interconnect wear-out phenomena in the underlying hard-
ware. They must also take into consideration the workload
type and intensity variations due to changes in application
behavior. In addition, robust DPM frameworks must also

cope with sources of uncertainty in the system under their
control, e.g., inaccuracies in monitoring data about the cur-
rent (power-performance) state of the system. These sources
of variability and uncertainty tend to cause two effects: (i)
difficulty of determining the current global state of the sys-
tem and predicting the next state given the DPM agent (con-
troller)’s action, and (ii) difficulty in determining the reward
(credit assignment) rate of a chosen or contemplated action.
Therefore, DPM policies that are statically optimized (and
are considered to be globally optimal for the modeled sys-
tem) may in reality not achieve the optimal performance in
the presence of such uncertainties and variations. Hence,
adaptive DPM methods that are able to learn the input
and environmental variations/uncertainties (in workload
type/intensity and underlying hardware state) and change
the policy accordingly have become critical for state-of-the-
art system optimizations.

Many DPM methods have been proposed and investi-
gated in the literature [1], [2], [3], [4], [5], [6], [7], [8], [9],
[10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21],
[22], [23]. They can be broadly classified into three catego-
ries: ad hoc, stochastic, and learning based methods. Ad hoc
policies are based on the idea of predicting whether the next
idle period length is greater than a specific value (the break-
even time Tbe) or not. A decision to the sleep state will be
made if the prediction indicates an idle period longer than
Tbe. Among thesemethods, Srivastava et al. [3] used a regres-
sion function to predict the idle period length, whereas
Hwang andWu [4] proposed an exponential-weighted aver-
aging function for predicting the idle period length. Ad hoc
methods are easy to implement, but performwell only when

� Y. Wang is with Syracuse University, Syracuse, NY 13210.
E-mail: ywang393@syr.edu.

� M. Pedram is with the University of Southern California, Los Angeles, CA
90089. E-mail: pedram@usc.edu.

Manuscript received 26 July 2014; revised 15 Jan. 2016; accepted 21 Jan. 2016.
Date of publication 16 Mar. 2016; date of current version 14 Nov. 2016.
Recommended for acceptance by T. Gonzalez.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2016.2543219

IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 12, DECEMBER 2016 3713

0018-9340� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

the service requests are highly correlated. Moreover, they
typically do not take system performance into account.

By modeling the service request arrival times (rates) and
device service times (rates) as stochastic processes, stochas-
tic DPM policies can take into account both power con-
sumption and performance simultaneously. Stochastic
DPM techniques have a number of key advantages over ad
hoc techniques. First, they capture a global view of the sys-
tem, thereby allowing the designer to search for a global
optimum policy that can exploit multiple inactive states of
multiple interacting resources. Second, they compute the
exact solution in polynomial time for the performance-
constrained power optimization problem. Third, they
exploit the vigor and robustness of randomized policies. On
the flip side, the performance and power consumption
obtained by the stochastic policy are expected values, and
there is no guarantee that the results will be optimum for a
specific instance of the corresponding stochastic process.
Second, policy optimization requires a prioriMarkovmodels.
Third, policy implementation tends to bemore involved.

In [5], Benini et al. modeled a power-managed system as
a controllable discrete-time Markov decision process (MDP)
by assuming that the non-deterministic request inter-arrival
times and request service times follow stationary geometric
distributions. Qiu and Pedram in [6] modeled a similar sys-
tembyusing a controllable continuous-timeMDPwith Poisson
distribution for the request arrival times and exponentially
distributed request service times. This in turn enables the
powermanager (PM), i.e., the DPMagent, towork in an asyn-
chronous and event-driven manner, and thereby, reduce the
decisionmaking overhead and improve dynamic response of
the controller. Other enhancements include the time-indexed
semi-MDP (SMDP) model of Simunic et al. [7]. To cope with
uncertainties in the underlying hardware state, DPM policies
based on the partially observable Markov decision processes
(POMDP) have been proposed in [8], [9], [10]. Please note
that in the above-mentioned stochastic DPM approaches, ser-
vice request inter-arrival times and system service times are
modeled as stationary processes that satisfy certain probabil-
ity distributions. In addition, an optimal policy for given con-
trollable MDP can be found only if we have knowledge (and
model) of state transition probability function and reward
function ofMDP.

Several recent work use machine learning techniques
for adaptive policy optimization. Compared with simple
ad hoc policies, machine learning-based approaches can
account for power and performance penalty simulta-
neously, and perform well under various workload condi-
tions. In [11], [12], an online policy selection algorithm is
proposed that generates offline and stores a set of DPM poli-
cies (referred to as “experts”) to choose from. The controller
evaluates the performances of the experts at the end of each
idle period and based on that decides which expert should
be activated next. The performance of the expert-based
approach is close to the best performing expert for any
given workload. Reference [13] employs a similar idea of
policy selection on hard disk power management for mobile
devices. However, the effectiveness of such learning algo-
rithm depends heavily on the offline selected experts.
Besides, such an algorithm has a limited ability to achieve a
good power-performance tradeoff.

Tan et al. in [14], [15] proposed to use an enhanced
Q-learning algorithm for DPM. This is a model-free RL
approach since the PM does not require prior knowledge of
the state transition probability functions. However, the
knowledge of the state and action spaces and also the reward
function is required. The enhanced Q-learning based DPM
learns a policy online by trying to learn which action is the
best for a certain system state, based on the reward or penalty
(cost) received. In this way, the PM does not depend on any
pre-designed experts, and can achieve a much wider range
of power-latency tradeoffs. However, this work is based on a
discrete-time model of the stochastic process, and therefore
has the following limitations: (i) the discrete-time controller
has relatively high overhead to make frequent and regular
decisions, and (ii) discrete-time controller may not make
timely decisions for fast state changes.

In this paper, we present a novel approach for reinforce-
ment learning-based, system-level DPM in a partially
observable environment. Similar to the previous DPM
work, we consider the power management of a specific I/O
device (component), e.g., hard disk, WLAN card, or USB
devices. The proposed DPM framework possesses the mer-
its of the reference work [14], [15], i.e., being model free,
and independent of any pre-designed experts. Moreover,
the proposed approach can perform policy learning and
power management in a continuous-time and event-driven
manner, and therefore, it enables us to learn a desirable
timeout policy.1 Other original characteristics of the pro-
posed DPM framework are the following

� The proposed method utilizes the enhanced TD(�)
learning algorithm for SMDP [25] in order to acceler-
ate convergence and alleviate the reliance on the
Markovian property.

� Workload prediction is incorporated in this work to
provide partial information about service requester
(SR) state for the RL algorithm. Specifically, an online
Bayesian classifier [28] is chosen as the workload pre-
dictor because of its relatively high prediction accu-
racy, low implementation cost, and the fact that the
information it provides comes with a certain degree
of certainty due to the use of posterior probability [28].

� State and action spaces of the RL algorithm have
been optimized, i.e., the total number of state-action
pairs has been significantly reduced compared to the
methods presented in [14], [15].

� To further increase the convergence speed and (or)
enhance performance, several other improvements
have been incorporated, including multiple-update
initialization, dynamic action sets, and locally random-
ized action selection as detailed in Section 5.

In the proposed method, the tradeoff between system
(component) power consumption and latency can be pre-
cisely controlled by a user-defined parameter. Experiments
on both synthesized and real workload traces show that the
proposed DPM framework achieves a much “deeper and

1. The timeout policy is the optimal DPM policy when the service
request inter-arrival times are stationary but non-exponentially distrib-
uted [7], and [7] derives the optimal timeout value using Markov deci-
sion process methods.

3714 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 12, DECEMBER 2016

wider” tradeoff curve between average power consumption
and latency of the power-managed system (component),
compared with prior work references. The maximum sav-
ing in power dissipation without sacrificing any latency is
18.6 percent compared to the reference expert-based
approach proposed in [11]. Alternatively, the maximum
latency saving without any power consumption increase is
73.0 percent compared to the existing best-of-bread DPM
techniques. The proposed method works for single device
(component) without dynamic voltage and frequency scal-
ing (DVFS) capability [24]. Power management of multi-
core systems is out of the scope.

2 RECENT WORK ON ADAPTIVE DPM
ALGORITHMS

There have been many recent advancements on adaptive
DPM algorithms. For example, reference work [18] applies
model predictive control approach for DPM that captures
the temporal dynamics of system and user state, the cost of
power consumption, as well as the effect of power-saving
actions on the user and system. Later work [19], [20] apply
the model predictive control approach for dynamic voltage
and frequency scaling and multi-core systems. Such model
predictive control approach is essentially learning the best-
fit parameters of the Markov decision process modeling of
the power-managed system, and then derive the optimal
control policy by solving this Markov decision process.
Compared with the model-free RL framework, such model-
based approach (i) requires a detailed Markov decision pro-
cess model of the power-managed system given in prior
and (ii) it requires a significantly larger learning space than
the RL algorithm, since the former requires to learn the state
transition probabilities when taking a specific action in each
state, whereas the latter only requires to learn the optimal
action to choose in each state.

Similar to reference work [14], [15], other works such as
[21], [22], [23] also apply discrete-time RL technique for
DPM or DVFS for a digital multimedia system or a multi-
core processor. Once again, the discrete-time RL technique
results in a relatively large overhead in real implementa-
tions since the RL algorithm needs to make decision and
evaluation in a periodic basis. This is especially true in the
context of DPM for I/O devices, e.g., hard disk, WLAN
card, or USB devices, in which the request processing time
(e.g., reading/writing a page for the hard disk or sending/
receiving a packet for the WLAN card) is order(s) of magni-
tude less than wakeup time or average request inter-arrival
time. Moreover, the discrete-time controller may not make
timely decisions for fast state changes (suppose a new
request arrives but the controller can only make decision at
the next discrete-time decision epoch, which results in addi-
tional delay.)

Finally, there is a set of reference work [16], [17] that
address the adaptive control of power supply of embedded
sensor nodes, in which the power supply can be made of
battery, supercapacitor, or a hybrid system. This kind of
adaptive control of power supply can be naturally com-
bined with the RL-based DPM framework in this paper to
derive a unified RL-based power management framework
of the whole embedded system.

3 THEORETICAL BACKGROUND

3.1 Semi-Markov Decision Process

A stationary semi-Markov decision process is a continuous-
time dynamic system comprised of a countable state set S
and a finite action set A. The decision maker (DM) can
choose action only when the system changes to a new state.
Suppose that the system changes to state s 2 S at the current
(transition) epoch, and action a 2 A is applied. An SMDP
then evolves as follows:

� At the next epoch, the system transitions to state s0

with probability p s0js; að Þ given that a is chosen in s.
Furthermore, the next epoch occurs within t time
units with probability p tjs; a; s0ð Þ given s, a, and s0.
Hence, the next epoch occurs at or before time t and
the new state is s0 with probability fss0 tjað Þ � p
s0js; að Þ � p tjs; a; s0ð Þ. Let T s; að Þ denote the expected
value of the duration that system occupies state s.

We have T s; að Þ ¼ R1
0 1�P

s02S fss0 tjað Þ� �
dt. If this

duration is an exponentially distributed random var-
iable, the SMDP reduces to a continuous-time MDP.2

� When DM selects action a in state s, she accrues a
reward at the rate of r s; að Þ as long as the system
occupies s (before it transitions to state s0.)

A policy p ¼ s; að Þjs 2 S; a 2 Af g is a set of state-action
pairs for all the states of an SMDP. We use notation p sð Þ ¼ a
to specify the action that is chosen in state s according to
policy p. An optimal policy is the one maximizing the total
expected reward. We consider the class of stationary and
deterministic policies unless otherwise specified. However,
we shall see in Section 3.2 that we can learn non-stationary
policy using RL techniques. Also, we shall see in Section 5.3
that the proposed improvement of locally randomized
action selection allows us to learn randomized policy in the
DPM framework.

3.2 Temporal Difference Learning for SMDP’s

Fig. 1 illustrates the generalmodel for reinforcement learning,
which is comprised of an agent, a finite state space S, a set of
all available actionsA, and a reward functionR : S �A! R.

Assume that the agent-environment interaction system
evolves as a stationary SMDP, which is continuous in time

Fig. 1. Agent-environment interaction model.

2. In the DPM framework, the distribution of T(s,a), e.g., the time to
turn on, turn off the device or the process a service request, is generally
far from exponential distribution [7]. In general, the time to turn on or
turn off the device satisfies a uniform distribution or a Pareto distribu-
tion [7].

WANG AND PEDRAM: MODEL-FREE REINFORCEMENT LEARNING AND BAYESIAN CLASSIFICATION IN SYSTEM-LEVEL POWER MANAGEMENT 3715

but has a countable number of events. Then there exists a
countable set of times t0; t1; t2; . . . ; tk; . . .f g known as epochs.
At epoch tk, the system has just transitioned into state sk 2 S,
and this information is captured by the agent. The agent
selects an action ak 2 A according to some policy p. At time
tkþ1, the agent finds itself in a new state skþ1, and in the time
period tk; tkþ1½ Þ, it receives a scalar rewardwith rate rk.

Suppose that system operation starts at time t0. The
return R is defined as the discounted integral of reward rate.
Furthermore, the value of a state s under a policy p, denoted
by V p sð Þ, is the expected return when starting from state s
and following policy p thereafter:

V p sð Þ ¼ Ep Rjs0 ¼ sf g
¼

X
s02S

Z 1

t0

e�b t�t0ð Þ � V p s0ð Þdfss0 t� t0jp sð Þð Þ

þ
X
s02S

Z 1

t0

Z t

t0

e�b t�t0ð Þ � r s;p sð Þð Þdt � dfss0 t� t0jp sð Þð Þ;

(1)

where b > 0 is a discount factor.
Similarly, we can define the value functions for state-

action pairs:

Qp s; að Þ ¼ Ep Rjs0 ¼ s; a0 ¼ af g

¼
X
s02S

Z 1

t0

Z t

t0

e�b t�t0ð Þ � r s; að Þdt � dfss0 t� t0jað Þ

þ
X
s02S

Z 1

t0

e�b t�t0ð Þ �Qp s0;p s0ð Þð Þdfss0 t� t0jað Þ:

(2)

Now suppose that we want to estimate the value func-
tion V p sð Þ for some state s. However, the agent has no pre-
defined policy or prior knowledge about state transition
probabilities and transition times, which are essential for
characterizing an SMDP. Therefore, traditional value itera-
tion or policy iteration methods cannot be applied here.
Instead, a simple one-step temporal difference learning
method [26] (also known as the TD(0) rule) for SMDPmay be

used. Such a method generates an estimate V kð Þ sð Þ for each
state s at epoch tk, which is estimate of the actual value V p sð Þ
following policy p. Suppose that state sk is visited at epoch

tk, then the TD(0) rule updates the estimate V kð Þ skð Þ at the
next epoch tkþ1 based on the chosen action ak and the next
state skþ1 (which is observed by the agent) as follows [25]:

V kþ1ð Þ skð Þ ¼ V kð Þ skð Þ

þ a
1� e�btk

b
r sk; akð Þ þ e�btkV kð Þ skþ1ð Þ � V kð Þ skð Þ

� �
:

(3)

In the above expression, tk ¼ tkþ1 � tk is the time that
system remains in state sk; a 2 0; 1ð Þ denotes the learning

rate; 1�e�btk
b

r sk; akð Þ is the sample discounted reward

received in tk time units; and V kð Þ skþ1ð Þ is the estimated
value of the actually occurring next state. Please note that
whenever state sk is visited, its estimated value is updated

to be closer to 1�e�btk
b

r sk; akð Þ þ e�btkV kð Þ skþ1ð Þ, where

r sk; akð Þ is the instantaneous reward received and V kð Þ skþ1ð Þ
is the estimated value of the actually occurring next state.
The key idea is that the aforesaid expression is a sample of

the value of V kð Þ skð Þ, and it is more likely to be correct
because it incorporates the real return. If the learning rate a

is adjusted properly (i.e., it slowly decreases) and policy is
kept unchanged, it is proved that TD(0) will converge to the
optimal value function [26]

For realistic RL algorithms, we need not only evaluate
the performance of a predefined policy, but simultaneously
learn the optimal policy and use that policy to control (i.e.,
make decisions.) To achieve this goal, the RL algorithm
should learn the value of each state-action pair s; að Þ. Mean-
while, the agent should choose an action at each state in
order to obtain high potential return. More specifically, such

method generates an estimate Q kð Þ s; að Þ for each state-action
pair s; að Þ at epoch tk. Suppose that state sk is visited at epoch
tk, then at that epoch the agent chooses an action either with

the maximum estimated value QðkÞðsk; aÞ for various actions
a 2 A, or by using other semi-greedy policies [26]. The
"- policy is a widely adopted semi-greedy policy, where the
action with the maximum estimated value is chosen with
probability 1� " and a random action is chosen with proba-
bility ". This policy well balances between exploitation versus
exploration, in order to overcome to risk of getting stuck in a
sub-optimal solution.3 Moreover, the TD learning rule

updates the estimateQðkÞðsk; akÞ at the next epoch tkþ1, based
on the chosen action ak, and the next state skþ1.

3.3 TD(�) Learning for SMDP’s

Because a realistic DPM problem is non-Markovian and
non-stationary, we turn to the more powerful TD(�) algo-
rithm [26]. TD(�) behaves more robustly in non-Markovian
cases because it seamlessly combines the simple one-step
TD algorithm and the Monte Carlo method (which does not
rely on the Markovian property assumption.) The learning
rate of TD(�) is also faster.

Suppose that we are in state sk at epoch tk, and the agent
makes decision ak. In one-step TD learning, we wait until
the next epoch tkþ1 and then perform a “one-step backup”

to update the estimate V kð Þ skð Þ. In one-step backup, the tar-
get is the immediate reward plus the discounted estimated
value of the next state [25], i.e.,:

R
ð1Þ
k ¼

1� e�btk

b
r sk; akð Þ þ e�btkV kð Þ skþ1ð Þ: (4)

Similarly, we could perform two-step backup, in which
we wait until epoch tkþ2 and then perform a “ backup” to

update the value estimate V kð Þ skð Þ. The target of two-step
backup is given by:

R
2ð Þ
k ¼

1� e�btk

b
r sk; akð Þ þ e�btk �

1� e�btkþ1

b
r skþ1; akþ1ð Þ þ e�b tkþtkþ1ð ÞV kð Þ skþ2ð Þ;

(5)

where the system transitions from state sk under action ak to
state skþ1, and then under action akþ1 ends up in state skþ2.

3. An RL agent must exploit the best action known so far to gain
rewards while exploring all the possible actions to find a potentially
better choice. If the action with temporarily highest Q value is always
chosen, we take the risk of getting stuck in a sub-optimal solution.

3716 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 12, DECEMBER 2016

This result can be easily generalized to n-step backup for
arbitrary n. When n!1, the n-step backup algorithm
becomes the Monte Carlo method, which relies on repeated
random sampling to compute optimal policy. However, n-
step backup is rarely used directly because it is difficult to
implement. Instead, people seek to find effective ways of
averaging backups of different steps.

The TD(�) learning algorithm may be understood as one
particular way of averaging n-step backups. It contains all

the n-step backups, each weighted proportional to �n�1

(0 < � < 1). Notice that the one-step backup is given the
largest weight 1� �. The resulting target is:

R�
k ¼ 1� �ð Þ �

X1
n¼1

�n�1 � RðnÞk : (6)

The TD(�) learning algorithm can be conveniently
implemented with the help of eligibility traces, as dis-
cussed in [26]. Among variant specific implementations,
the one implemented in the proposed system is Watkin’s
Q(�) algorithm [27] modified for SMDP problems due to
a joint consideration of effectiveness, robustness and con-
vergence rate. This algorithm can perform simultaneous
learning and control. In particular, the value update rule
for an state-action pair in Watkin’s Q(�) algorithm is
given as follows:

8 s; að Þ 2 S �A :

Q kþ1ð Þ s; að Þ ¼ Q kð Þ s; að Þ þ a � e kð Þ s; að Þ�
1� e�btk

b
r sk; akð Þ þmax

a0
e�btkQ kð Þ skþ1; a0ð Þ �Q kð Þ sk; akð Þ

� �
;

(7)

where Q kð Þ s; að Þ is the value of state-action pair s; að Þ at deci-
sion epoch tk, and e kð Þ s; að Þ denotes the eligibility of that
pair. Such eligibility reflects the degree of how “ recently”
and “ frequently” state-action pair s; að Þ has been chosen in
the recent past. More specifically, if state-action pair s; að Þ
has been visited more recently before epoch tk, e

kð Þ s; að Þ is
higher. Or if s; að Þ has been visited more frequently in the

recent past, e kð Þ s; að Þ is also higher. It can be updated online
as follows:

e kð Þ s; að Þ ¼ �e�btk�1e k�1ð Þ s; að Þ þ d s; að Þ; sk; akð Þð Þ; (8)

where d x; yð Þ denotes the delta kronecker function. Please
note that parameters b and � will affect the convergence
speed. A larger b value will accelerate convergence but may
degrade the solution quality (because it puts too much

discounts for future), and parameter � also has similar
effect. In our work, the appropriate value of b is around 0.05
- 0.1 and value of � is around 0.7. This is similar to general
conclusion in reinforcement learning [28].

4 SYSTEM MODEL

In this section, we explain how to extend the RL techniques
to the system-level DPM framework. Similar to the previous
work in DPM [11], [14], [15], the system whose power is
being managed is comprised of a service requester (SR), a
service provider (SP), and a service queue (SQ). Again simi-
lar to previous DPM work, we consider a specific I/O
device (component), e.g., hard disk, WLAN card, or USB
devices, as the SP.4 In this paper, we focus on reducing the
power consumption and finding a near-optimal power-
latency tradeoff of the SP. In this framework, the SR gener-
ates different types of requests to be processed by the SP,
and these requests are buffered in the FIFO queue SQ before
processing. The exact generating time instances of service
requests are not known a priori. A power manager (PM)
using the RL algorithm, as well as a workload predictor is
added to the system, as illustrated in Fig. 2.

The SP has three main states as shown in Fig. 3. It is in
the active state while processing service requests, and
after it has finished, it becomes idle. When the SP is in
the idle state, it can autonomously and instantaneously
transit to the active state as soon as any task arrives.
Unfortunately, the SP has non-zero power consumption
in idle state. It can, however, go to the sleep state from
the idle state. A sleeping SP consumes little power com-
pared to an idle one, but it suffers from large wakeup
latencies along with high power consumption during the
transition to active state. Our goal is to properly schedule
the sleep time for the SP in order to reach the balance
between latency and energy consumption.

As shown in Fig. 2, the SP (the I/O device) is controlled
by the PM, which is implemented using RL-based DPM
algorithm. The PMmonitors the number of requests waiting
in the SQ, the current SP state (active, idle, sleep), as well as
the (estimated) current state of SR, and consequently makes
decisions (adjusts the power state of the SP.) The SR state
is the service request generating rate (high, medium, low)
or the next inter-arrival time (short, long, etc.) There are
two decision points for the PM: First, every time the SP

Fig. 2. Abstract model of a power-managed system.
Fig. 3. State diagram of the SP.

4. In this paper we focus on I/O components without dynamic volt-
age and frequency scaling (DVFS) capability [24]. Power management
of DVFS-enabled modules, e.g., CPU, GPU, and multi-core systems is
out of the scope of this work.

WANG AND PEDRAM: MODEL-FREE REINFORCEMENT LEARNING AND BAYESIAN CLASSIFICATION IN SYSTEM-LEVEL POWER MANAGEMENT 3717

transits from active to idle state, the PM will make a deci-
sion on whether to let the SP go to sleep straightaway or
set a timeout. If a timeout is set and no requests arrive
during this period, the device will subsequently go to
sleep. Second, while SP is in the sleep state, the PM
decides whether or not to wake up the SP based on the
number of waiting requests in the SQ. To be more realis-
tic, we consider in this paper that the exact SR state can-
not be directly obtained by the PM. In contrast to the
previous work on POMDP [8], [9], the PM has no prior
knowledge of the characteristics of the SR. Therefore,
workload prediction has to be incorporated to provide
partial information (estimation) of the SR state to the PM
so that the PM can effectively learn in the observation
domain of SR. We adopt the online Bayesian predictor for
workload prediction, as shall be discussed in Section 4.1.
After that we will discuss about the implementation
details of the RL-based DPM method in Section 4.2.

4.1 The Bayesian Workload Predictor

The proposed DPM framework relies on workload predic-
tion to provide partial observation of the actual SR state for
the PM, and therefore, the SR state used by the PM to make
decisions is essentially the observation state. The workload
prediction method needs not be 100 percent accurate,
because the RL technique is robust enough to handle not-
so-accurate SR state estimations. Extensive experiments
show that the partial observation (i.e., estimations) about
the SR state can significantly enhance the performance of
the PM.

Previous work on workload prediction in [3], [4] assumes
that a linear combination of previous idle times (or request
inter-arrival times) may be used to infer the future ones,
which is not always true. For example, one very long inter-
arrival time can significantly affect a set of subsequent pre-
dictions (because the linear combination will likely to be
large.) Therefore a naive Bayesian classifier, which can over-
come the above effect by encoding the inter-arrival times
into “long, short, etc.” values (therefore it will not treat a
very long inter-arrival time differently than other “long”
inter-arrival times) and result in a much higher prediction
accuracy, is adopted in this work as workload predictor.
Moreover, the proposed predictor is simple to implement,
and works in an online manner.

Another benefit of the online Bayesian classifier is: The
partial information it provides ensures certain degree of
certainty, due to the use of posterior probability in such an
algorithm. For example, suppose that the service request
inter-arrival times are 80 percent short and 20 percent
long. Then a trivial predictor, which predicts all the inter-
arrival times to be short, will result in a high overall pre-
diction accuracy of 80 percent. However, such a predictor
cannot discriminate between the SR states, and therefore
cannot provide useful information for the PM. For the
Bayesian classifier, on the other hand, the prediction accu-
racy will always be higher than 50 percent when it makes
a prediction of either short or long inter-arrival times.
This is because of having only two possible outcomes
“short” or “long” the simple case, and the prediction
accuracy will be higher than 50 percent due to the using
of maximum a posteriori (MAP) information. Hence, the

Bayesian classifier can provide effective partial informa-
tion about SR state discrimination that is required by the
PM.5

Naive Bayesian classifier is a generative classifying
technique based on the idea of maximum a posteriori.
Given the input feature xx ¼ ðx1; x2; . . . :; xnÞ, the goal of
the classifier is to assign class label l from a finite set L
for the output y, by maximizing the posterior probability
Probðy ¼ ljx1; x2 . . . :; xnÞ:

yMAP ¼ argmax
l

Probðy ¼ ljx1; x2 . . . :; xnÞ

¼ argmax
l

Probðx1; x2; . . . :; xnjy ¼ lÞ � Probðy ¼ lÞ
Probðx1; x2; . . . :; xnÞ :

(9)

In Eqn. (9), the denominator Probðx1; x2; . . . :; xnÞ, which
is the probability of witnessing the new input feature xx, is
irrelevant for decision making since it is the same for every
class assignment of y. Probðy ¼ lÞ, which is the prior (pre-
evidence) probability of the hypothesis that the class of y is l,
is easily calculated from the training set. Hence, we only
need to calculate Probðx1; x2; . . . :; xnjy ¼ lÞ, which is the con-
ditional probability of seeing the input feature vector xx
given that the class of y is l.

A fundamental assumption of the naive Bayesian classi-
fier is that all the input features are conditionally independent
given the class y, e.g., Prob x1jx2; . . . :; xn; y ¼ lð Þ ¼ Prob
ðx1jy ¼ lÞ. Then we have Prob x1; x2; . . . :; xnjy ¼ lð Þ ¼Q

j Probðxjjy ¼ lÞ, and we compute the MAP class of y as

follows:

yMAP ¼ argmax
l

Prob y ¼ lð Þ �
Yn
j¼1

Prob xjjy ¼ l
� �

: (10)

In the original naive Bayesian classifier, the prior and
conditional probabilities are obtained by performing Maxi-
mum Likelihood estimation on the whole data set. However,
in this work we need to implement the Bayesian predictor
in an online fashion. Therefore, when we observe a
sequence of features ðx1 ¼ m1; x2 ¼ m2; . . . :; xn ¼ mnÞ and
output y ¼ l, we update the conditional and prior probabili-
ties as follows:

8i 2 1; 2; . . . ; nf g : Prob xi ¼ mijy ¼ lð Þ
 aþ ð1� aÞ � Probðxi ¼ mijy ¼ lÞ (11)

Probðy ¼ lÞ bþ ð1� bÞ � Probðy ¼ lÞ; (12)

where a;b 2 ð0; 1Þ denote the updating rate parameters.
They are typically set to a value of 0.8 or higher. Of course,
all the probability values should be normalized after updat-
ing. Please note that this online adaptive implementation
will only converge to the same results as (10) when the

5. This advantage also holds when comparing Bayesian classifier
with logistic regression [28] or linear regression that encodes inter-
arrival times into “long, short, etc.” values. The inherent assumption of
logistic regression is still that a linear combination of past inter-arrival
times can be used to infer future one, whereas Bayesian classifier is bet-
ter in the case of patterned but not linear relationships. For example, if
the inter-arrival time pattern is always “long, long, long, short” then
the Bayesian classifier can predict the pattern while logistic regression
cannot.

3718 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 12, DECEMBER 2016

stable period is far longer than the convergence time, which
could be satisfied in our experiments.

In this work, we use previous service request inter-
arrival times as the input features xx ¼ ðx1; x2; . . . :; xnÞ,
where xi ¼ 1 if the corresponding inter-arrival time is
greater than the break-even time Tbe; otherwise, we have
xi ¼ 0. The predictor’s output is the prediction whether or
not the next inter-arrival time is greater than Tbe. In real
implementations, we use three output states “ long, short,
and unknown”. We predict the next request inter-arrival
time to be “ unknown” if the difference between the poste-
rior probabilities that the next inter-arrival time is long and
that it is short is less than ", i.e., Prob y ¼ 1jx1; x2 . . . :;ðj
xnÞ � Prob y ¼ 0jx1; x2 . . . :; xnð Þj < ", where " is a small pre-
defined parameter. In this way the prediction accuracy can
be further enhanced. Experimental results about the pro-
posed Bayesianworkload predictor are reported in Section 6.

The Bayesian predictor requires negligible computation
and storage overheads. Upon arriving of each sevice
request, the computation complexity of the Bayesian predic-
tor is Oð#offeatures�#ofpredictionoutcomesÞ. In our imple-
mentation the number of features is 4 - 6 and the number of
prediction outcomes is three, thereby resulting in negligible
computation and storage overheads.

4.2 RL-Based DPM

In this section, we explain how to extend the RL techniques
for the DPM framework.

We provide a number of key definitions and notation next.
Let tGj j ¼ 1; 2; 3; . . .ð Þ denote the time when the jth request is
generated by the SR. Suppose that we are currently at time t

with tGj � t < tGjþ1. Note that the PM has no exact informa-

tion on tGjþ1 at the current time t. Instead, it only receives an

estimation (long, short, unknown, etc.) on the service request

inter-arrival time tGjþ1 � tGj from the Bayesian classifier.

The PM monitors the following three state parameters of
the power managed system:

� The SP state SP ðtÞ, which is the component power
state (active, idle, sleep, etc.)

� The SQ state SQðtÞ, which is the number of requests
buffered in SQ.

� The estimated SR state, which is represented in this
paper by the estimation (long, short, unknown, etc.)
on the request inter-arrival time tGjþ1 � tGj from the
online Bayesian predictor.

To apply RL techniques for DPM frameworks, we define
decision epochs, i.e., time instances at which new decisions
are made and updates for the RL algorithm are executed.
Note that decision epochs are a subset of all the possible
transition epochs. In our case, decision epochs coincide
with one of the following three cases:

1. The SP entered idle state (SP ðtÞ ¼ idle) and
SQðtÞ ¼ 0.

2. The SP has just entered the sleep state and finds that
SQðtÞ > 0.

3. The SP is in the sleep state and a new service request
arrives.

We denote the kth k ¼ 1; 2; 3; . . .ð Þ decision epoch by tDk .
There are two types of decision epochs. If at decision

epoch tDk , we have SP ðtDk Þ ¼ idle and SQðtDk Þ ¼ 0 (case 1),

we call the decision epoch tDk an idle-state decision epoch.

On the other hand, if at decision epoch tDk , we have

SP ðtDk Þ ¼ sleep (case 2 or case 3), we call the decision

epoch tDk a sleep-state decision epoch.
In the TD(�) learning algorithm adopted in the PM, at

each decision epoch the power managed system is in some

particular state, denoted by sðtDk Þ, which is used for the PM

to make decisions and perform value updating. We call it
the RL state. Obviously, the RL state can be characterized by
the SP power state (idle, active, sleep), as well as other sys-
tem state parameters. We provide a classification of RL
states based on two definitions.

Definition 1. The 1st class of RL state:

We define that the RL state at decision epoch tDk , denoted

by sðtDk Þ, belongs to the 1st class of RL states if tDk is an idle-

state decision epoch. At this decision epoch tDk , we have

SP ðtDk Þ ¼ idle and SQðtDk Þ ¼ 0. Then the RL states belonging

to the 1st class are further categorized by the estimated SR
state from the online Bayesian predictor, which is, in fact,

the estimation of the request inter-arrival time tGjþ1 � tGj
(if we suppose tGj � tDk < tGjþ1.)

Definition 2. The 2nd class of RL state:

We define that the RL state at decision epoch tDk , denoted

by sðtDk Þ, belongs to the 2nd class of RL states if tDk is a sleep-

state decision epoch. We know that SP ðtDk Þ ¼ sleep at this

decision epoch tDk . Then the RL states belonging to the 2nd

class are further categorized by (i) the estimated SR state

from the online Bayesian predictor, and (ii) the SQðtDk Þ
value, i.e., the number of requests waiting in the SQ at deci-

sion epoch tDk .

We only consider the SQðtDk Þ value in the range

0 < SQðtDk Þ �Max SQ, where Max SQ is the predefined

maximum SQðtDk Þ value. This is because if SQ tDk
� �

>

Max SQ, the only possible action chosen by the PM at deci-

sion epoch tDk would be turning the SP on to the active

state to process service requests. On the other hand, if

SQ tDk
� � ¼ 0, the only possible action chosen by the PM

would be keeping the SP in the sleep state until the next ser-
vice request arrives.

The action space for the 1st class of RL states, denoted by
A1, is given by A1 ¼ f0 � Tbe; 0:2Tbe; 0:5Tbe; 0:8Tbe; 1Tbe;
2Tbe; 3Tbe; 5Tbe; . . .g (as an example), where those actions cor-
respond to different timeout values. Among those actions,
0 � Tbe corresponds to “ immediate shut-down”. Note that as
pointed out in reference [7], the optimal policy when the SP
is idle for non-Markovian environments is often a timeout
policy, wherein the SP is put to sleep if it is idle for more
than a specific timeout period. The proposed PM learns to
choose the optimal action among action set A1 by using a
RL technique. Moreover, the use of timeout values as
actions allows for “ multiple updating” as well as the use of
“ dynamic action sets”, as we shall discuss in the following
section. Finally, the action space for the 2nd class of RL
states, denoted by A2, is given by A2 ¼ fkeepsleep;
goactiveg. In other words, there are two possible actions in

WANG AND PEDRAM: MODEL-FREE REINFORCEMENT LEARNING AND BAYESIAN CLASSIFICATION IN SYSTEM-LEVEL POWER MANAGEMENT 3719

these RL states: keeping the SP in the sleep state until
the next request comes, or going to active to process the
service requests buffered in the SQ.6

In the proposed DPM framework, we have significantly
reduced the number of state-action pairs compared with the
reference work [14], [15]. The total number of state-action
pairs for the 1st class of RL states is 3� 8 ¼ 24 since (i) we
use three estimated SR states long, short, and unknown,
and (ii) there are eight possible actions in A1, i.e., A1j j ¼ 8,
as discussed before. On the other hand, if we set
Max SQ ¼ 5, the total number of state-action pairs for the
2nd class of RL states is 5� 3� 2 ¼ 30 since we have
A2j j ¼ 2. Hence, the total number of state-action pairs in the
proposed DPM framework is 24þ 30 ¼ 54, which is signifi-
cantly less than that in [14], [15]. Table 1 provides a sum-
mary of the states and actions used in the proposed
framework. In general, the number of decision epochs for
an RL algorithm to converge is three to five times the num-
ber of state-action pairs (54 in our implementation.) In our
RL algorithm, experimental results demonstrate that the RL
algorithm will converge within 200 – 300 service request
arrivals, demonstrating the fast convergence speed of the
proposed method.

In this paper, we use “cost rate” instead of “reward rate” in
the RL algorithm. In fact, the cost rate is simply the negative
value of the reward rate, and therefore is compatible with
the RL framework. The cost rate cos t tð Þ ¼ w � P ðtÞ þ ð1�
wÞ � SQðtÞ is a linearly-weighted combination of SP power
consumption P ðtÞ and the number of requests SQðtÞ buff-
ered in the SQ, where w is the weighting factor. This is a rea-
sonable cost rate because as reference [6] has pointed out,
the average number of service requests buffered in the SQ is
proportional to the average latency for each request, which
is defined as the average time for each request between the
moment it is generated and the moment that the SP finishes
processing it, i.e., it includes the queueing time plus execu-
tion time. The above observation is based on the Little’s
Law [29]. In this way, the value function Q s; að Þ for each
state-action pair s; að Þ is a combination of the expected total
discounted energy consumption and total latency experi-
enced by all service requests. Since the total number of ser-
vice requests and the total execution time are fixed,
the value function is equivalent to a linear combination of
the average power consumption and per-request latency.
The relative weight w between the average power

consumption and per-request latency can be adjusted to
obtain the Pareto-optimal power-latency tradeoff curve.

Algorithm 1. The RL-Based DPM Algorithm.

At each decision epoch tDk (the power-managed system is in RL

state s tDk
� �

:

Choose a tDk
� � ¼ argmina2A

class s tD
kð Þð ÞQ

kð ÞðsðtDk Þ; aÞ with proba-

bility 1� "; choose a random action with probability ".

If class s tDk
� �� � ¼ 1:

The chosen action corresponds to a specific timeout value,
say, x � Tbe.
The SP waits in the idle state for a period of time with
duration x � Tbe.
If some request comes during that period of time:
Keep SP in active state for processing requests until SQ is
empty again. Then we arrive at decision epoch tDkþ1.
The controller calculates power consumption including
both idle and busy power states, and the request latency
is the processing time in the busy state.

Else:
Go to the sleep state and wait until the SQstate > 0 (i.e.,
some request comes during the idle-to-sleep transition
or after the SP is in the sleep state.) Then we arrive at

decision epoch tDkþ1.
End

Else:
If a tDk

� � ¼ keep sleep:
Keep the SP in the sleep state until the next service
request comes. Then we arrive at decision epoch tDkþ1
(another RL state with number of waiting requests incre-
mented by 1).

Else:
Turn the SP active to process service requests until SQ is
empty again. Then we arrive at decision epoch tDkþ1.

End
End
tk ¼ tDkþ1 � tDk .
The cumulative cost State Cost ¼ R tD

kþ1
tD
k

e�b t�tD
kð Þcost tð Þ � dt.

D ¼ State Costþ
mina0 e�btkQ kð Þ s tDkþ1

� �
; a0� ��Q kð Þ s tDk

� �
; a tDk
� �� �

:
For each RL state s, action a 2 Aclass sð Þ:
e kð Þ s; að Þ

�e�btk�1 � e k�1ð Þ s; að Þ þ d s; að Þ; s tDk
� �

; a tDk
� �� �� �

:

Q kþ1ð Þ s; að Þ Q kð Þ s; að Þ þ a � D � e kð Þ s; að Þ.

The details of the proposed RL-based DPM algorithm are
provided in Algorithm 1, and an outline of the algorithm is
given as follows. Suppose that we are now at decision epoch

tDk , and the system under control is in RL state sðtDk Þ. At that
decision epoch in the proposed algorithm, the PM main-

tains value estimates Q kð Þ s; að Þ for each RL state s, and each
action a 2 AclassðsÞ, where classðsÞ denotes which particular

class of RL states (the 1st or 2nd) the RL state s is in. Then at

decision epoch tDkþ1, the value estimates Q kð Þ s; að Þ of all

state-action pairs s; að Þ‘s are updated according to the TD(�)
learning rule stated in Eqn. (7). The Q-value updating pro-
cess of the RL-based DPM algorithm is illustrated in Fig. 4.
Please note that although the DPM problem is not SMDP in
essence, we can obtain much better results compared to the
expert-based systems due to the robustness of the utilized

TABLE 1
A Summary of States and Actions Used in the DPM Framework

State differentiation (number) Actions

Idle-state Estimated SR state (3) A set of timeout
values (8)

Sleep-state Estimated SR state (3) �
No. of waiting requests (5)

“ Keep sleep” or
“ Wake-up” (2)

6. We only use two actions “keep sleep” and “wake-up”, instead of
using a time-out policy, mainly due to convergence speed considera-
tions. If we use a time-out policy similar to that used for idle-state deci-
sion epochs, the number of actions will be increased by several times,
and then the convergence speed will be reduced even more signifi-
cantly (this is because sleep state is less frequently visited than arrival
rate of requests.)

3720 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 12, DECEMBER 2016

TD(�) learning technique, as well as other improvements
been made (see Section 5).

The proposed RL-based DPM algorithm has low compu-
tation and storage complexity. As can be seen from
Algorithm 1, the computation complexity at each decision
epoch is Oð#ofstate-actionpairsÞ, which is 54 in our
implementation.

5 SYSTEM IMPROVEMENTS

In this section, we discuss several improvements we made
to the DPM framework including “multiple updating”,
“dynamic action set”, and “locally randomized action
selection”.

5.1 Multiple-Update Initialization

The use of various timeout values as actions enables us to
perform multiple updates. When the SP is in the idle state,
the PM (i.e., the DPM agent) takes an action corresponding
to a specific timeout value. If a request arrives before
the timeout period expires, all the actions with a larger time-
out value can evaluate (using the “backup” method as
described in Section 3.) This is because all the actions with a
larger timeout value, if taken, would result in the same
immediate cost and the discounted next state value com-
pared to the selected action (since the actually occurring
next state would be the same.) On the other hand, for those
actions with a smaller timeout value, the SP may enter the
sleep state and the time-to-sleep may be a random variable.
In this case, we cannot accurately estimate the cost and dis-
counted next state value, and thus we do not update the cor-
responding Q values.

The proposed multiple-update scheme can accelerate the
convergence speed of RL algorithm significantly, but some
actions may be evaluated more often than the others. There-
fore, in this work the multiple-update scheme is only uti-
lized for quick Q value initialization.

5.2 Dynamic Action Set

In the continuous-time problem setting, the action space of
timeout values should also be continuous. We use discrete
action space because it is difficult for RL algorithms to learn
from a continuous one. However, we may lose optimality
through discretizing the continuous space because we may
not be able to find the exact optimal action in a continuous
space. Therefore, the “ dynamic action set” method is pro-
posed to mimic a continuous timeout action space, which
may result in deeper power-latency tradeoff. Besides, it can
alleviate the negative effect caused by action set with very
few actions or actions that are not carefully selected.

There are mainly two operations updating the dynamic
action set: expansion and contraction, as shown in Fig. 5. Con-
sider the power managed system after multiple-updates ini-
tialization. At that time each state-action pair is associated

with a Q value Q s; að Þ and an eligibility trace value e s; að Þ.
Suppose that for state s, action aj has the minimal Q value,
which means when the power managed system is in state s,
action aj is the optimal action to choose among the action
set a1; a2; a3; . . . ; amf g. It is natural to think that the actual
optimal timeout action in the continuous space should be in
the neighborhood of aj, and it is desirable to conduct a
finer-grained search for the optimal timeout action in the
neighborhood of aj. Based on this observation, we expand

aj to a set of actions aj;1; aj;2; . . . ; aj;n
� �

. For example, the

action 0:5 � Tbe can be expanded to a set of actions
0:4 � Tbe; 0:45 � Tbe; 0:5 � Tbe; 0:55 � Tbe; 0:6 � Tbef g. After that,
the PM begins to evaluate the new expanded action set

a1; a2; . . . ; aj�1; ajþ1; . . . ; am; aj;1; aj;2; . . . ; aj;n
� �

on that state.

Please note that when expanding an action aj, we have to
generate the Q values and eligibility trace values for the

new actions aj;1; aj;2; . . . ; aj;n
� �

. We generate these values in

the following way:

for each i : Q s; aj;i
� � ¼ Q s; aj

� �
; e s; aj;i
� � ¼ e s; aj

� �
n

: (13)

On the other hand, because of the non-stationary nature of
real workload, it is likely that after some time, the optimal
action at state s is not in the set aj;1; aj;2; . . . ; aj;n

� �
any more.

In other words, the action with the smallestQ value does not
belong to that set. In this case, still maintaining the expanded

set aj;1; aj;2; . . . ; aj;n
� �

will result in additional computation

and convergence overhead. Therefore, we need to contract

the expanded set aj;1; aj;2; . . . ; aj;n
� �

to the single action aj as

shown in Fig. 5. Similarly, we need to generate the Q value
and eligibility trace value for the action aj :

Q s; aj
� � ¼ min

i
Q s; aj;i
� �

; e s; aj
� � ¼Xn

i¼1
e s; aj;i
� �

: (14)

After performing contraction to the action set, we find ak
among the action set a1; a2; a3; . . . ; amf g with the smallest Q

value and expand ak to a set of actions ak;1; ak;2; . . . ; ak;n
� �

with the above-mentioned procedure. In this way, the PM
maintains a dynamic action set in which actions are distrib-
uted densely near the optimal action in the continuous
action space.

Compared with a large action set with, say,m� n actions,
using dynamic action set will result inmuch less convergence

Fig. 4. Q-value updating diagram. An arrow from B to A means that A is
updated based on the information provided by B.

Fig. 5. Operations on the dynamic action set.

WANG AND PEDRAM: MODEL-FREE REINFORCEMENT LEARNING AND BAYESIAN CLASSIFICATION IN SYSTEM-LEVEL POWER MANAGEMENT 3721

overhead, especially when we update the dynamic set every
50 or 100 service requests (not on a per request basis.) The
overhead for performing "-policy also decreases. Moreover,
the usage of dynamic action set also makes the implementa-
tion of “ locally randomized action selection” straightfor-
ward, aswe shall discuss in the next section.

5.3 Locally Randomized Action Selection

As shown in the literature [6], the optimal policy minimiz-
ing power consumption with certain delay constraint is a
randomized policy. However, it is difficult to learn a global
randomized policy (selecting with certain probabilities
among all actions) with RL techniques. Several RL techni-
ques, such as the actor-critic method [26], provide the possi-
bility of learning randomized policy through the use of
softmax selections. However, the parameters are difficult to
set in such algorithms. The system either has large overhead
due to “over-randomness” or becomes nearly greedy (with
too little randomness).

The utilization of dynamic action set allows for locally
randomized action selection. Consider the expanded actions
from an original action as described in Section 5.2. These
expanded actions form a “local action set” while the others
are in the “global action set”. the global decision of whether
selecting the local action set or the global action set is taken
by the "-greedy policy, i.e., select the local action set with
probability 1-" and the global set with probability ": The
actions in local action set are selected by the soft-max policy.
If the global action set is selected, each of its actions are
selected with equal probability.

The softmax selection method utilizes a Boltzmann dis-
tribution. When the system is in state s, the PM chooses
action a from the local action set with probability Prob s; að Þ
given by:

Prob s; að Þ ¼ e�Q s;að Þ=tP
b2localactionset e�Q s;bð Þ=t ; (15)

which implies that more desirable action a with smaller
Q s; að Þ value will be chosen with higher probability. With
the proposed locally randomized action selection method,
we have the potential to learn the optimal randomized pol-
icy, with much less computation overhead compared to the
global version.

6 EXPERIMENTAL RESULTS

In this section, we present experimental results of the RL-
based DPM with workload prediction and other improve-
ments on two different devices: a hard disk drive (HDD)
and a wireless adapter card (WLAN card.) Tables 2 and 3
list the power and delay characteristics of both devices,
which are the state-of-the-art values similar to [15], [24]. In
these tables, Ttr is the time taken in transitioning to and
from the sleep state, whereas Etr is the energy consumption

in waking up the device. Tbe refers to the break-even time.
The meanings of other characteristics can be easily inferred
from their names.

For the baseline systems, we use the expert-based DPM
developed in [11], [12]. Three policies are adopted as experts
in the expert-based DPM: fixed timeout policy, adaptive
timeout policy, and exponential predictive policy [4], as
shown in Table 4. We also adopt the discrete-time reinforce-
ment learning framework proposed in [14], [15] as baseline
system. We use 0.2s as the decision period as an effective
tradeoff between decision overhead and system perfor-
mance, and useMax SQ ¼ 5 (same as our work.)

In the rest of this paper, we refer to the “simple RL-based
power-managed system” as the DPM system that can only
make decisions when the SP is idle (and only the first class
of RL states are utilized). This is for fair comparison with
the baseline expert-based algorithms since the baseline
expert-based algorithms cannot make decisions in the sleep
state. The simple RL system has three different RL states on
which we can make decisions: (idle, SR rate high), (idle, SR
rate low), and (idle, SR rate hard to decide). Similarly, we
refer to the “whole DPM system” as DPM system that can
make decisions when SP is at both idle or sleep states as
described in Section 4.2.

6.1 Hard Disk Drive

For the HDD, we simulate based on the synthesized SR
model, which is a continuous-time Markov process model
with three different states, each corresponding to a different
service request generating rate. This kind of continuous-
time Markov process model is a widely used modeling tech-
nique for workloads where request inter-arrival times
are non-exponentially distributed [6]. The state transition
matrix is given by:

�0:02 0:01 0:01
0:005 �0:01 0:005
0:005 0:005 �0:01

2
4

3
5:

The service request generating rates for the three states
are given by 1.5, 0.1, and 0.025, respectively. The request
inter-arrival times at each state satisfy arbitrary distribution
(not necessarily be exponential.) The PM does not know
what the exact state the SR is in; rather it relies on the work-
load predictor for estimations of the SR state.

TABLE 2
Power and Delay Characteristics of the HDD

Pbusy Pidle Psleep Etr Ttr Tbe

2.15W 0.90W 0.13W 7.0J 1.6s 6.8s

TABLE 3
Power and Delay Characteristics of the WLAN Card

Ptran Prcv Pidle Psleep Etr Ttr Tbe

1.6W 1.2W 0.90W 0W� 0.9J 0.3s 0.7s

�The WLAN card is turned off.

TABLE 4
Characteristics of the Expert-Based Policy

Expert Characteristics

Fixed Timeout Timeout ¼ any value
Adaptive Timeout Initial Timeout ¼ Tbe, adjustment

¼ 	0:1Tbe

Exponential Predictive Ikþ1 ¼ a � ik þ 1� að Þ � Ik, a ¼ 0:5

3722 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 12, DECEMBER 2016

Fig. 6 provides the power-latency tradeoff curves for the
simple RL-based power-managed system with workload
prediction, the two different expert-based DPM frame-
works, as well as the discrete-time RL framework. The time-
out values of the fixed timeout expert in those two systems
are set to be 0:5 � Tbe and 1:5 � Tbe, respectively, which are
typical timeout values in the DPM framework [7], [11], [14].
We show experimental results on both DPM frameworks
with and without the three further optimization methods
(i.e., multiple-update initialization, dynamic action set, and
locally randomized action selection). For the DPM frame-
work without further optimization, we set the action (time-
out) values to be f0 � Tbe; 0:2Tbe; 1Tbe; 2Tbeg. We have the
following observations from the figure: (i) the tradeoff curve
of the RL-based power-managed system is more evenly dis-
tributed and has a much wider tradeoff range.7 Even with
the same average latency, the RL-based DPM framework can
achievemuch lower power consumption than the references.
The maximum power saving with the same average latency
is 18.1 percent. On the other hand, the maximum saving in
average latency is more than 73.0 percent without any
increase in the average power consumption. (ii) Comparing
the performance of the DPM frameworkwith further optimi-
zations and that without further optimizations, we can see
that the former consistently outperforms the latter although
their performances converge at certain points. More specifi-
cally, the maximum power saving is 2.2 percent with the
same average latency, whereas the maximum reduction in
average latency is 12.7 percent when the average power con-
sumption remains the same. The higher performance mainly
results from the optimization of dynamic action set, which
can alleviate the negative effect caused by action set with
very few actions or actions that are not carefully selected.

When comparing with the discrete-time RL-based DPM
framework, one can still conclude that our proposed

RL-based DPM framework can achieve a “deeper and
wider” tradeoff curve, and also achieve lower average
power consumption when the average latency is the same
(and vice versa). The main reasons are: (i) the discrete-time
controller has relatively high overhead to make frequent
and regular decisions, and (ii) discrete-time controller may
not make timely decisions for fast state changes (suppose a
new request arrives but the controller can only make deci-
sion at the next discrete-time decision epoch, which results
in additional delay.)

Fig. 7 provides the power-latency tradeoff curves for the
whole DPM-based power-managed system with workload
prediction, as well as two expert-based DPM frameworks
which is the same as discussed before. Comparing these
two figures, we can see that with the help of making deci-
sions at sleep state, power consumption can be further mini-
mized to less than 2/3 of the minimal power consumption
achievable by the simple RL-based DPM framework
by sacrificing performance.8 In fact, around 1s average
latency is acceptable for many delay-tolerant applications
on the HDD or WLAN cards. This is especially true for por-
table devices in which power and energy consumption min-
imization is the primary goal, and therefore reducing power
consumption by 1/3 to 1/2 is worthwhile. When comparing
the performance of DPM frameworks with and without fur-
ther optimizations, we can observe a higher reduction of
power consumption up to 4.2 percent when the average
latency remains the same.

6.2 WLAN Card

For the WLAN card, we have measured several real traces
using the tcpdump utility in Linux. Although tcpdump fails
to capture the MAC layer retransmissions, it affords a fairly
good approximation of WLAN activities. The measured
traces include a 45-minute trace for online video watching,
a 2-hour trace for web surfing, and a 6-hour trace for a com-
bination of web surfing, online chatting, and server access-
ing, 2 hours for each.

Due to the handshaking procedure of the TCP protocol,
as well as the bursty nature of data networks, often tens of
TCP packets can be transmitted or received by the WLAN
card in one second. Obviously, making tens of decisions in

Fig. 6. Power-latency tradeoff curves for the HDD: The simple system.

Fig. 7. Power-latency tradeoff curves for the HDD: The whole system.

7. The key to compare two trade-off curves is as follows: Under the
same average power consumption the proposed system can achieve
significant reduction in average request latency. Under the same aver-
age latency, the proposed system can achieve significant reduction in
average power consumption. In other words, given any actual system
specification (with target at power minimization or latency minimiza-
tion or a combination), the proposed system can achieve lower power
consumption (lower average latency) while the average latency (power)
is the same, compared with baseline systems.

8. In this case, when comparing with the N-policy, our proposed RL-
based DPM framework can achieve more than 30 percent average
latency reduction under the same average power consumption.

WANG AND PEDRAM: MODEL-FREE REINFORCEMENT LEARNING AND BAYESIAN CLASSIFICATION IN SYSTEM-LEVEL POWER MANAGEMENT 3723

one second will result in huge overhead for the system.
Since packets often “group together” in a very short period
of time, we incorporate a “minimal decision interval” of
0.1 s for the RL algorithm and the online Bayesian workload
predictor. As shown in Fig. 8, a new service request comes
at time tj, and the workload predictor predicts the time
interval tjþ1 � tj (tjþ1 is the arrival time of the first service
request generated after time tj þ 0:1 s) based on the knowl-
edge of tj � tj�1, tj�1 � tj�2, etc. Similarly, suppose that at
time tj, the SP is in the idle state, and a new service request
arrives. Then the SP turns to the active state for processing
that request. After the request processing finishes, the SP
cannot turn to the sleep state immediately. Instead, it should
wait in the idle state until time tj þ 0:1 s and finishes proc-
essing all the service requests generated in the time period

tj; tj þ 0:1s
� �

, before it could take any action, either going

sleep right away or wait in idle state for a specific timeout.
For each specific trace (web trace, video trace, and com-

bined trace), we initialize the conditional probabilities of the
Bayes predictor to be 1/3 (assuming three possible out-
comes), and test on the trace. The accuracy is defined as the
ratio of correctly predicted inter-arrival times to the total
inter-arrival times (i.e., number of requests - 1) over the
whole trace. The correct prediction rates of the online Bayes-
ian predictor are 99.2 percent for the video trace, 79.8 percent
for the web trace, and 82.8 percent for the combined trace. In
comparison, the correct prediction rate of an exponential
predictor [4] for the combined trace is less than 65 percent.

For the WLAN case, we also compare with the RL-based
DPM framework with oracle predictor with 100 percent pre-
diction accuracy (the detailed RL implementation is the
same as our proposed framework), in order to illustrate the
effect of workload prediction. Fig. 9 provides the power-
latency tradeoff curves for the simple RL-based power-man-
aged system with Bayesian workload prediction, the oracle

framework, as well as three different expert-based DPM
frameworks. We derive these experimental results using the
combined trace. The timeout values of the fixed timeout
expert in those three systems are set to be 0:5 � Tbe, 1 � Tbe

and 1:5 � Tbe, respectively. We illustrate experimental results
on both DPM frameworks with and without the three
further optimization methods (multiple-update initializa-
tion, dynamic action set, and locally randomized action
selection). For the DPM framework without further
optimization, we set the action (timeout) values to be
f0 � Tbe; 0:3Tbe; 1Tbe; 3Tbe; 5Tbeg. On the other hand, the trade-
off curves for the whole DPM system are given in Fig. 10.
We only show experimental results on the DPM framework
with the three further optimization methods because the
performance difference is much smaller compared with the
range of X-axis and Y-axis in this figure. Comparing these
two figures, we can see that with the help of making deci-
sions at the sleep state, the RL-based DPM framework can
further minimize power to half of the minimum power con-
sumption achievable by the simple RL-based DPM frame-
work by sacrificing performance. When comparing RL-
based DPM framework with baseline systems, we can see
again that the RL-based DPM method can achieve a “wider
and deeper” power-latency tradeoff curve than the latter.
When comparing to the expert-based approach in which the
fixed timeout expert has a timeout value of 1 � Tbe, the maxi-
mum power saving with the same latency is 18.6 percent;
while the maximum per-request latency saving with the
same power consumption is 29.3 percent. When comparing
the performance of the DPM frameworks with and without
further optimizations, we conclude that the former consis-
tently outperforms the latter framework. Moreover, the
maximum power saving is 7.6 percent with the same aver-
age latency, whereas the maximum reduction in average
latency is 14.7 percent when the average power consump-
tion remains the same. These gaps are more significant than
the HDD experimental results based on synthesized SR
model. Finally, when comparing the performance of the
proposed DPM frameworks with the oracle frameworks
with 100 percent prediction accuracy, we conclude that the
performance of our proposed framework is close to the ora-
cle framework in the “low latency” tradeoff region, i.e., the
average power consumption is relatively high while the

Fig. 8. Illustration of the minimum decision interval.

Fig. 9. Power-latency tradeoff curves for the WLAN card: The simple
system.

Fig. 10. Power-latency tradeoff curves for the WLAN card: The whole
system.

3724 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 12, DECEMBER 2016

average latency is low. On the other hand, the oracle frame-
work can outperform our proposed framework in the “low
power” tradeoff region, indicating that making decisions
(mainly sleep decisions) judiciously in this region heavily
rely on the performance of workload predictions.

As another illustrative example,we demonstrate in Fig. 11
the power-latency tradeoff curves of the whole RL-based
DPM framework on the video trace. Because of the frequency
request sending/receiving during online video watching,
always keeping the SP in the idle state (without letting it go
into the sleep state) will be the optimal policy in terms of
latency minimization. Although the RL-based DPM frame-
work cannot outperform this “ always on” policy in terms of
latency saving, it could reduce the average power consump-
tion to 50 percent of the original power consumption by
sacrificing performance. Again, this is achieved by the capa-
bility of making decisions at the sleep state.

For video watching, the video requests typically arrive
earlier than the time when we watch the corresponding con-
tent. The few-second-gap is needed for video decoding and
re-framing. In order to save power consumption (this is
especially true for portable devices), it is possible for the
WLAN card to turn to sleep and turn active again when it
has accumulated a batch of video requests. In this content,
an average latency of 0.8s may be acceptable with the bene-
fit of reducing power consumption by nearly half, since it
generally means that we watch all video contents 0.8s later,
which is not so significant compared with the network and
decoding delay. On the other hand, video presentation and
conference is delay sensitive and PM should set the goal to
only minimize delay. In this case the optimal policy, i.e.,
always ON, can still be derived.

7 CONCLUSION

In this paper, we propose a novel adaptive DPM technique
using the model-free reinforcement learning technique. We
adopt the TD(�) learning technique for SMDP as the basic
RL algorithm in the DPM framework. The proposed DPM
method is model-free and requires no prior information of
the state transition probability function or the reward

function. Moreover, we propose a workload predictor based
on an online Bayesian classifier to effectively provide esti-
mations of the future service request inter-arrival times to
the DPM agent (i.e., the PM.) Several improvements, includ-
ing multiple-update initialization, dynamic action set, and
locally randomized action selection, are also incorporated.
The proposed DPM framework is capable of exploring a
tradeoff in the power-latency design space of the power-
managed system by adjusting a user-defined parameter.
Experimental results on both synthesized and real workload
traces show that the proposed DPM framework finds a
much “deeper and wider” power and latency tradeoff curve
compared with reference expert-based DPMmethods.

ACKNOWLEDGMENTS

This work is supported in part by the Software and Hard-
ware Foundations program of the NSF’s Directorate for
Computer & Information Science & Engineering.

REFERENCES

[1] Y. Wang, Q. Xie, A. C. Ammari, and M. Pedram, “Deriving a near-
optimal power management policy using model-free reinforce-
ment learning and Bayesian classification,” in Proc. 48th ACM/
EDAC/IEEE Des. Autom. Conf., 2011, pp. 41–46.

[2] L. Benini, A. Bogliolo, and G. De Micheli, “A survey of design
techniques for system level dynamic power management,” IEEE
Trans. VLSI Syst., vol. 8, no. 3, pp. 299–316, Jun. 2000.

[3] M. Srivastava, A. Chandrakasan, and R. Brodersen, “Predictive
system shutdown and other architectural techniques for energy
efficient programmable computation,” IEEE Trans. VLSI, vol. 4,
no. 1, pp. 42–55, Mar.1996.

[4] C. H. Hwang and A. C. Wu, “A predictive system shutdown
method for energy saving of event-driven computation,” in Proc.
IEEE/ACM Int. Conf. Comput.-Aided Des., 1997, pp. 28–32.

[5] L. Benini, G. Paleologo, A. Bogliolo, and G. De Micheli, “Policy
optimization for dynamic power management,” IEEE Trans.
Comput.-Aided Des., vol. 18, pp. 813–833, Jun. 1999.

[6] Q. Qiu and M. Pedram, “Dynamic power management based on
continuous-time Markov decision processes,” in Proc. 36th Des.
Autom. Conf., 1999, pp. 555–561.

[7] T. Simunic, L. Benini, P. Glynn, and G. De Micheli, “Event-driven
power management,” IEEE Trans. Comput.-Aided Des., vol. 20,
no. 7, pp. 840–857, Jul. 2001.

[8] H. Jung and M. Pedram, “Dynamic power management under
uncertain information,” in Proc. Des., Autom. Test Europe, 2007,
pp. 1–6.

[9] H. Jung and M. Pedram, “Resilient dynamic power management
under uncertainty,” in Proc. Des., Autom. Test Europe, 2008,
pp. 224–229.

[10] Q. Qiu, Y. Tan, and Q. Wu, “Stochastic modeling and optimization
for robust power management in a partially observable system,”
in Proc. Des., Autom. Test Europe, 2007, pp. 779–784.

[11] G. Dhiman and T. S. Rosing, “Dynamic power management using
machine learning,” in Proc. Int. Conf. Comput.-Aided Des., 2006,
pp. 747–754.

[12] G. Dhiman and T. S. Rosing, “Dynamic voltage scaling using
machine learning,” in Proc. Int. Symp. Low Power Electron. Des.,
2007, pp. 207–212.

[13] A. Weissel and F. Bellosa, “Self-learning hard disk power manage-
ment for mobile devices,” in Proc. 2nd Int. Workshop Softw. Support
Portable Storage, 2006, pp. 33–40.

[14] Y. Tan, W. Liu, and Q. Qiu, “Adaptive power management using
reinforcement learning,” in Proc. IEEE/ACM Int. Conf. Comput.-
Aided Des., 2009, pp. 461–467.

[15] W. Liu, Y. Tan, and Q. Qiu, “Enhanced Q-learning algorithm for
dynamic power management with performance constraint,” in
Proc. Des., Autom. Test Europe, 2010, pp. 602–605.

[16] S. Yue, D. Zhu, Y. Wang, and M. Pedram, “Reinforcement
learning-based dynamic power management in mobile computing
systems equipped with hybrid power supply,” in Proc. Int. Conf.
Comput. Des., 2012, pp. 81–86.

Fig. 11. Power-latency tradeoff curves for the WLAN card on the video
trace.

WANG AND PEDRAM: MODEL-FREE REINFORCEMENT LEARNING AND BAYESIAN CLASSIFICATION IN SYSTEM-LEVEL POWER MANAGEMENT 3725

[17] C.-T. Liu and R. C. Hsu, “Adaptive power management based on
reinforcement learning for embedded system” Proc. 21st Int. Conf.
Springer New Frontiers Appl. Artif. Intell., 2008, pp. 513–522.

[18] G. Theocharous, S. Mannor, N. Shah, P. Gandhi, B. Kveton,
S. Siddiqi, and C.-H. Yu, “Machine learning for adaptive power
management,” Intel Technol. J. Autonomic Comput., vol. 10, no. 4,
pp. 299–311, 2006.

[19] D.-C. Juan and D. Marculescu, “Power-aware performance
increase via core/uncore reinforcement control for chip-multi-
processors,” in Proc. Int. Symp. Low Power Electron. Des., 2012,
pp. 97–102.

[20] D.-C. Juan, S. Garg, J. Park, and D. Marculescu, “Learning the
optimal operating point for many-core systems with extended
range voltage/frequency scaling,” in Proc. Int. Conf. Hardware/Soft-
ware Codes. Syst. Synthesis, 2013, pp. 1–10.

[21] U. A. Khan and B. Rinner, “A reinforcement learning framework
for dynamic power management of a portable, multi-camera traf-
fic monitoring system,” in Proc. Int. Conf. IEEE Green Commun.
Conf., 2012, pp. 557–564.

[22] U. A. Khan and B. Rinner, “Online learning of timeout policies for
dynamic power management,” ACM Trans. Embedded Comput.
Syst., vol. 13, no. 4, pp. 1–25, 2014.

[23] R. Ye and Q. Xu, “Learning-based power management for multi-
core processors via idle period manipulation,” in Proc. Asia South
Pacific Des. Autom. Conf., 2012, pp. 115–120.

[24] C. Xu, X. Lin, and L. Zhong, “Device drivers should not do power
management,” in Proc. ACM SIGOPS Asia-Pacific Workshop Syst.,
Jun. 2014, pp. 1–7.

[25] S. Bradtke and M. Duff, “Reinforcement learning methods for
continuous-time Markov decision problems,” in Proc. Advances
Neural Inf. Process. Syst., 1995, vol. 7, pp. 393–400.

[26] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. Cambridge, MA, USA: MIT Press, 1998.

[27] C. Watkins, “Learning from delayed rewards,” Ph.D. dissertation,
Cambridge Univ., Cambridge, England, 1989.

[28] C. M. Bishop, Pattern Recognition and Machine Learning. New York,
NY, USA: Springer, Aug. 2006.

[29] L. Kleinrock, Queueing Systems, Volume I: Theory. New York, NY,
USA: Wiley, 1975.

Yanzhi Wang received the BS degree with dis-
tinction in electronic engineering from Tsinghua
University, Beijing, China, in 2009, and the PhD
degree in electrical engineering from the Univer-
sity of Southern California, Los Angeles, CA,
USA, in 2014, under the supervision of Prof. Mas-
soud Pedram. He is currently an assistant profes-
sor at the Department of Electrical Engineering
and Computer Science at Syracuse University,
Syracuse, NY, USA. His current research inter-
ests include system-level power management,

neuromorphic computing, near-threshold computing, digital circuits
power minimization and timing analysis, etc. He received best paper
awards at 2014 IEEE International Symposium on VLSI (ISVLSI) and
2014 IEEE/ACM International Symposium on Low Power Electronics
Design (ISLPED), top paper award at 2015 IEEE Cloud Computing Con-
ference (CLOUD), and multiple best paper nominations. He is a member
of the IEEE.

Massoud Pedram received the PhD degree in
electrical engineering and computer sciences
from the University of California, Berkeley in
1991. He is the Stephen and Etta Varra professor
in the Ming Hsieh Department of Electrical Engi-
neering at the University of Southern California,
He holds 10 U.S. patents and has published four
books, 13 book chapters, and more than 140
archival and 380 conference papers. His
research ranges from low power electronics,
energy-efficient processing, and cloud computing

to photovoltaic cell power generation, energy storage, and power con-
version, and from RT-level optimization of VLSI circuits to synthesis and
physical design of quantum circuits. For this research, he and his stu-
dents have received seven conference and two IEEE Transactions Best
Paper Awards. He is a recipient of the 1996 Presidential Early Career
Award for Scientists and Engineers, a fellow of the IEEE, an ACM Distin-
guished Scientist, and currently serves as the Editor-in-Chiefs of the
ACM Transactions on Design Automation of Electronic Systems and the
IEEE Journal on Emerging and Selected Topics in Circuits and Systems.
He has also served on the technical program committee of a number of
premiere conferences in his field and was the founding Technical Pro-
gram Co-chair of the 1996 International Symposium on Low Power Elec-
tronics and Design and the Technical Program Chair of the 2002
International Symposium on Physical Design.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

3726 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 12, DECEMBER 2016

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

