
Optimal Offloading Control for a Mobile Device
Based on a Realistic Battery Model and

Semi-Markov Decision Process

Shuang Chen, Yanzhi Wang, Massoud Pedram
Department of Electrical Engineering

University of Southern California
Los Angeles, USA

{shuangc, yanzhiwa, pedram}@usc.edu

Abstract—Due to the limited battery capacity in mobile de-
vices, the concept of mobile cloud computing (MCC) is proposed
where some applications are offloaded from the local device to the
cloud for higher energy efficiency. The portion of applications or
tasks to be offloaded for remote processing should be judiciously
determined. In this paper, the problem of optimal task dispatch,
transmission, and execution in the MCC system is considered.
Dynamic voltage and frequency scaling (DVFS) is applied to the
local mobile processor, whereas the RF transmitter of the mobile
device can choose from multiple modulation schemes and bit
rates. The power consumptions of the mobile components that
cannot be directly controlled, e.g., the touch screen, GPU, audio
codec, and I/O ports, are also accounted for through capturing
their correlation with the mobile processor and RF transmitter.
Finally, a realistic and accurate battery model is adopted in
this work in order to estimate the battery energy loss rate in a
more accurate way. This paper presents a semi-Markov decision
process (SMDP)-based optimization framework, with the actions
of different DVFS levels and modulation schemes/transimission
bit rates and the objective of minimizing both the energy drawn
from the battery and the average latency in request servicing. This
paper derives the optimal solution, including the optimal DVFS
policy, offloading rate, and transmission scheme, using linear
programming combined with a heuristic search. Experiments
are conducted on Qualcomm Snapdragon Mobile Development
Platform MSM8660 to find the correlations among the power
consumptions of the CPU, RF components, and other components.
Simulation results show that the proposed optimal solution
consistently outperforms some baseline algorithms.

I. INTRODUCTION
Mobile devices including smartphones and tablet-PCs have

seen rapid evolution in the past ten years. A typical smartphone
nowadays is equipped with a multi-core gigahertz processor,
gigabytes of DDR SDRAM, tens of gigabytes of flash memory,
high-resolution color display, as well as 3G/4G, Wi-Fi and
Bluetooth wireless communication devices. While they have
higher performance and more advanced functionality to meet
the ever growing requirement of the users, the embedded
components become more power hungry. Unfortunately, the
increase of volumetric/gravimetric energy density in (recharge-
able) batteries is much slower than the increase of power
demand, thereby resulting in a short battery life, which in turn
affects the user experience. Therefore, in order to maximize
the battery life while satisfying a certain service quality,
an effective management solution of the mobile device is
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required to achieve a reasonable balance between the power
consumption and performance.

In the case that all tasks are processed on the local mobile
device, the mobile power consumption can still be high when
there exist a large number of tasks within a limited time
period, even if the optimal power management solution is
adopted. The reason is that there exists only a confined set of
feasible solutions to finish each task before the deadline using
the limited amount of resources on the device. To provide
an alternative method of managing the applications on the
mobile device, the concept of mobile cloud computing (MCC)
is proposed [1], in which some applications are transferred to
the cloud with abundant computing and storage resources. The
technique that transfers the applications from the local mobile
device to a server in the cloud is referred to as computation
offloading, which is enabled by abstracting each application as
a virtual machine with some specified resource requirements.
And the server cluster allocates its resources to these virtual
machines through some resource allocation algorithms [2]. One
major benefit from computation offloading is that it saves the
power consumption for processing the offloaded applications
locally, thus elongating the battery lifetime in one charge cycle.
Along with computation offloading, some other techniques
can also help the mobile device achieve a better performance
and/or save energy consumption. For instance, the CPU can
be controlled to run at different voltages and frequencies using
dynamic voltage and frequency scaling (DVFS) [3], and the RF
module can switch between different modulation schemes [4].
Therefore, one can achieve a desirable tradeoff between the
power efficiency and the processing latency of an application
through DVFS and bit rate selection.

One major challenge against making judicious decisions
upon these controllable modules/components lies in the prob-
lem of accurate estimation of the total power consumption
of all the mobile components under every possible control
decision. Indeed, techniques such as DVFS have been studied
intensively so that we can calculate the power consumption of
the components to which they are applied with high accuracy
[5]. However, this cannot be done as easily for those modules
that cannot be controlled directly but also contribute to the
total power consumption, i.e. the GPU, the memory, the audio
codec, the touch screen, the I/O ports, etc. Although the
power consumptions of these modules are also affected by the
decisions we make, they depend on a variety of other factors
including the user’s behavior and the ambient temperature,
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which are sometimes at random from the point of view of
the mobile device. Therefore, it is not feasible to obtain the
information of the total power consumption of all mobile
components on a real-time basis based on the decisions, unless
an extra measurement module is embedded in the device,
which, however, introduces unnecessary power consumption
and contradicts our primary goal. An alternative method, which
is also adopted in this paper, is to perform the power profiling
on a mobile platform designed for testing only, and use the
information to estimate the power consumption of a normal
mobile device. In this paper, a series of experiments are
conducted on the Qualcomm Snapdragon Mobile Development
Platform MSM86601, a picture of which is shown in Fig.
1. Using the plug-in sensors in the Qualcomm Snapdragon
Platform, we run some typical applications and extract the
power profiles of all the major power-consuming components
including the two CPU cores, the digital core, the DRAM,
the display, etc, using the power profiling tool, Trepn Pro-
filer2. Furthermore, we use the power profiles to derive the
distribution of the total power consumption conditioned on the
joint decision pair of CPU frequency and transmission bit rate
(modulation scheme).

Moreover, we use a realistic battery model to prevent
misleading results. There are several factors that can make the
actual energy drawn from the battery exceed the value that is
calculated straightforwardly from the total power consumption
of all the modules/components. An obvious factor is the
existence of the internal resistance of the battery. In fact,
as pointed out in [6], the resistance of a Li-ion battery may
change as a function of the state-of-charge (SoC) of the battery.
Another factor is the rate capacity effect. According to the
Peukert’s law [7], the decreasing rate of the battery’s remaining
capacity, or equivalently, that of the remaining energy, is a
super-linear function of the discharging current. In other words,
the battery is less energy efficient when being discharged with
a higher current.

In this paper, we address the problem of application
management on a mobile device in an MCC system, where
requests of the application can be either processed locally or
sent to the remote server. In the mobile device, the mobile
CPU employs DVFS, and the RF transmitter can adaptively
select the most appropriate bit rate and modulation scheme
for request offloading. We model the mobile device as a semi-
Markov decision process (SMDP) [8], in which the states
reflect the remaining workload for the mobile CPU and RF
module, and the actions are decision pairs of (DVFS level,
transmission bit rate). In the SMDP formulation, we account
for the power consumptions of mobile components that cannot
be directly controlled, as well as an accurate battery model to
estimate the battery energy loss, which are overlooked by most
of the previous work. We derive the optimal solution, including
the optimal offloading rate, DVFS policy, and transmission
scheme, using a linear programming approach combined with
a one-dimensional heuristic search.

The rest of the paper is organized as follows: Section II
presents a review of related work. Section III introduces the
system model of the problem. We formulate the optimization
problem and propose the solution in Section IV-A. The exper-

1https://developer.qualcomm.com/sites/default/files/snapdragon-mdp-
8660.pdf

2https://developer.qualcomm.com/download

Fig. 1. (a)Qualcomm Snapdragon MDP MSM8660; (b)Graphic display of
Trepn

imental and simulation results are shown in Section V. And
the last section is the conclusion.

II. RELATED WORK
The discussion regarding the offloading policy in a cloud

computing system can be found in a series of prior work.
Reference [9] reaches the conclusion that an application or
task with high computation but limited data communication re-
quirement could benefit the most from computation offloading.
A comparison on power consumptions between local execution
and remote execution is made in [10], in which decisions of
computation offloading are made based on a joint consideration
of the application’s latency deadline, data size, and wireless
channel condition. Reference [11] addresses the problem of
carbon footprint profiling and optimization. Reference [12]
also uses SMDP to model a mobile device, but the battery
model is over-simplified. A number of dynamic computation
offloading schemes are presented in [13]–[15]. Finally, some
runtime offloading frameworks have been proposed for specific
applications [16], [17]. Also, there is some prior work that
addresses the problem of battery life time prediction and power
profiling in mobile devices. Reference [18], [19] introduced
analytical battery models based on electrochemical modeling
and analysis. Although very accurate, such models are too
complicated to be used for system level design. In comparison,
battery models in the form of equivalent electric circuits
as provided in [6], [20] are more suitable for developing a
mathematical formulation of the MCC framework. Further-
more, reference [21] estimates the specific parameters for this
battery model that fit the characteristic of Li-ion batteries.
And reference [22] provides a model for DC-DC converters
and their connections in a smartphone, analyzed the power
conversion efficiency and proposed improvement on it through
tuning design parameters.

III. SYSTEM MODEL
A. Overall system modeling for an MCC system

The framework of an MCC system is shown in Fig.
2. Assume that the computation capability of the server is
much higher than the mobile devices and the total number of
mobile devices in the MCC system is relatively large, then the
influence of one device’s behavior is negligible on the overall
performance of the server. From the view of the specific mobile
device that we are interested in, the server can be characterized
by an average processing rate µs and a utilization level ρs.

Given a modulation scheme , let Es denote the aver-
age energy per symbol received at the receiver side, then
Eb = Es/ log2 n is the average transmission energy per
bit, where n is the order of modulation. Given the power
spectral density of the noise, denoted by N0, the bit error rate
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Fig. 2. System framework of an MCC system

(BER) of transmission can be expressed as a function of Eb

N0

. Furthermore, one can calculate the frame error rate (FER)
based on BER, the length of a frame, and the source/channel
coding scheme [23]. To ensure reliable communication, the
ARQ protocol is applied in which ACK/NAK signals will be
sent back when a frame is received.

According to [24], the energy required per transmitted bit
on the transmitter side, denoted by Eb,Tx, is calculated based
on Eb, which is measured on the receiver side, as

Eb,Tx = kTEb · dβ (1)

where kT is a constant depending on the channel bandwidth,
antenna gain and amplifier efficiency; d is the distance between
the transmitter and the receiver, and β is the path loss exponent.
If we assume that the mobile device only moves within a
short distance relative to its distance to the server during
transmission, then the actual transmission energy per bit can
be approximated as proportional to the received energy per bit.

The mobile device is comprised of a task dispatching
unit, a local processing unit (CPU), a processing queue, a
transmitter, a transmission queue, and some other components.
Each application is interpreted as a set of tasks in the form
of computation requests. The local CPU can only process
one request at a time and the transmitter can only begin to
transmit another request after finishing the current one. New
requests are placed in the corresponding FIFO queue. Any
request arrival upon a full queue will simply be disregarded.
In order to find an analytical form of the average processing
delay, we assume that the request generation follows a Poisson
process with average generation rate of λ. If we are to offload
a request to the server (cloud) with probability poff , then the
request arrivals at the transmission queue and the processing
queue are independent of each other and both follow a Poisson
process, with average arrival rates given by λt = poff · λ
and λp = (1 − poff ) · λ, respectively. Since we apply DVFS
to the mobile CPU, there is a set of operating frequencies
{f0, f1, . . . , fM} that the CPU can choose from. Similarly,
the RF transmitter can use any transmission bit rate in the set
of {Rb,0, Rb,1, . . . , Rb,K}.

B. Power modeling for a mobile device
If we control the CPU to run at frequency fm and the RF

transmitter to transmit using bit rate Rb,k, then the total power
consumption of all the components, denoted by P

(k,m)
total , can

be divided into three parts and calculated as

P
(k,m)
total = Pmp + P kt + P (k,m)

x (2)

where Pmp is the power consumption of the mobile CPU and
is a superlinear (usually 2nd to 3rd order) function of fm;
P kt is the power consumption of the RF transmitter and is
given by P kt = Eb,TxRb,k; and P

(k,m)
x is the total power

consumption of the other components that cannot be controlled
directly. As mentioned in [5], [24], we can calculate Pmp
and P kt precisely using corresponding power models, but it is
difficult to accurately calculate the value of P (k,m)

x . Therefore,
we treat P (k,m)

x as a random variable which has different prob-
ability distributions depending on fm and Rb,k. We find the
probability distributions of P (k,m)

x for different decision pairs
through extensive experiments on the Qualcomm Snapdragon
Platform, and use the statistics to reflect the behavior of these
components in general mobile devices.

C. Modeling for the rechargeable battery
In this paper, we use the battery model described in [20],

which is in the form of an equivalent electrical circuit as
shown in Fig. 3. All the parameters in the circuit, including
the open circuit voltage (OCV) and the internal resistances
and capacitances, are functions of the state-of-charge (SoC)
of the battery defined as SoC = Cb/Cb,full, where Cb is
the remaining charge of the battery and Cb,full is the total
charge of the battery when it is fully charged. If we ignore the
transient effect because the the output voltage of the battery
does not change rapidly during a continuous discharging
process, then the open circuit voltage, denoted by VOC and
the internal resistance of the circuit, which is the sum of Rs,
Rts, and Rtl, and denoted by Rin, can be calculated as follows:

VOC = b11e
b12·SoC + b13 · (SoC)3 (3)

+b14 · (SoC)2 + b15 · SoC + b16

Rin = b21e
b22·SoC + b31e

b32·SoC + b41e
b42·SoC (4)

+b23 + b33 + b43

where all the bij’s are specified as in [21].
A power delivery network (PDN) comprised of multiple

DC-DC converters is considered to connect the battery and
various components in the mobile device (Fig. 4) so as to
provide the potentially different supply voltage levels. Each
DC-DC converter connects between the battery and a set of
mobile components with the same supply voltage level [22]. In
our battery model, the input voltage of a DC-DC converter, or
the close circuit output voltage (CCV) of the battery, denoted
by VCC , can be calculated through KVL as

VCC = VOC − Iin ·Rin (5)

where Iin is the output current of the battery.
Let Ptotal denote the total power consumption of all the

components in the mobile device, and ηc denote the energy
conversion efficiency of the DC-DC converters in the PDN,
we have

VCC · Iin = Ptotal/ηc (6)

Combining Eqn. (5) and (6), we have

(VCC)2 − VOC · VCC + (Ptotal ·Rin) /ηc = 0 (7)
(Iin)2 ·Rin − VOC · Iin + Ptotal/ηc = 0 (8)
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Fig. 3. Equivalent circuit model for Li-ion batteries [20]

Fig. 4. Conceptual diagram of a power conversion tree

Based on the values of VOC , Rin, Ptotal and ηc, we can solve
Eqn. (7) and (8) and get

VCC =
(
VOC +

√
(VOC)2 − 4Ptotal·Rin

ηc

)
/2 (9)

Iin =
(
VOC −

√
(VOC)2 − 4Ptotal·Rin

ηc

)
/(2Rin) (10)

Furthermore, the rate capacity effect causes the actual bat-
tery charge loss rate to be greater than the discharging current.
According to the Peukert’s Law [14], the total discharging time
of the battery, denoted by Td, is determined by

Td = Qref/Ieq (11)

where Qref is the total charge of the battery measured by a
small reference discharging current Iref (with negligible rate
capacity effect), and the equivalent discharging current Ieq can
be calculated as:

Ieq = (Iin/Iref )
γc · Iref (12)

where γc is the Peukert constant, which depends on the battery
type [25]. Combining Eqn. (10) and (12), we get

Ieq =

[
1

2Rin

(
VOC −

√
(VOC)2 − 4PtotalRin

ηc

)]γc
(Iref )1−γc

(13)
which will be used to reflect the actual battery charge loss
rate. Moreover, the energy loss rate of the battery is given by
VOC ·Ieq , which is from the view of the battery and higher than
the sum of power consumptions of all the mobile components.

IV. SMDP BASED PROBLEM FORMULATION AND
SOLUTION FRAMEWORK

A. Device modeling using SMDP
An SMDP is comprised of a set of states S and a set of

actions A, After a transition, if state s ∈ S is observed, an
action is chosen from a subset As ⊆ A. A policy, denoted
by π, is a description of what action to take in each state of
the system. If a deterministic policy is adopted, we use π =
{(s, a)|s ∈ S, a ∈ As}. Each (state, action) pair addresses
the action to take in one state. For an SMDP, the distribution

of the direction of transition and the inter-transition time are
functions of the current (state, action) pair and do not depend
on the history of the state/action. In this paper, we consider
the case where the system can transit from a state to itself.

For the purpose of demonstrating the model clearly, we
first model the transmission queue and the processing queue
as separate SMDP’s. For the transmission queue, the state
set is S(t) = {0, 1, . . . , Qt}, each state representing the
corresponding length of the transmission queue (including
the request that is being processed), where Qt is the max-
imum length of the transmission queue. And the action set
is A(t) = {Rb,0, Rb,1, . . . , Rb,K}, each action representing a
bit rate the RF transmitter supports. We assume that every
request is transmitted in a separate frame and that the length
of each request in terms of transmitted bit count follows an
exponential distribution. Then the length of a transmitted frame
also follows an exponential distribution, the mean value of
which is denoted by L̄. Then transmission time for a request
when action Rb,k ∈ A(t) is taken follows an exponential
distribution with a mean value of µt(k) = L̄/Rb,k. In case
of receiving an NAK signal, the corresponding frame should
be added back to the transmission queue again. We assume
that the receiver on the cloud can give out ARQ responses
quickly and the ARQ response travels at a high speed so that
the time between a request is transmitted and the NAK signal
is received can be omitted. Using the information provided
above, the state transition probabilities of the transmission
queue can be calculated as follows

pt,ki,i′ =



1, i = 0, i′ = 1

q(k), i = i′ = Qt

1− q(k), i = Qt, i
′ = Qt − 1

λt
λt + µt(k)

, 1 6 i 6 Qt − 1, i′ = i+ 1

q(k)µt(k)

λt + µt(k)
, 1 6 i 6 Qt − 1, i′ = i

(1− q(k))µt(k)

λt + µt(k)
, 1 6 i 6 Qt − 1, i′ = i− 1

0, otherwise
(14)

where pt,ki,i′ is the probability that the system will make a
transition to state i′ under the condition that the system is
currently in state i, and q(k) is the FER under bit rate Rb,k. For
the processing queue, the state set is S(p) = {0, 1, . . . , Qp},
where Qp is the maximum length of the processing queue,
and the action set is A(p) = {f0, f1, . . . , fM}, each action
representing an execution frequency of the processor. Assume
that the execution time for a request follows an exponential
distribution with mean value µp(m) if frequency fm is chosen,
then the transition probabilities can be calculated in the form
similar to Eqn. (14)

As mentioned in Section III-C, the energy loss rate of the
battery is a super-linear function of the total power consump-
tion of all the components. In order to accurately translate the
components’ power consumption into its impact on the battery
life-time, we need to calculate the actual energy loss rate of the
battery which is affected jointly by the power consumptions
of the CPU, the RF module, as well as the other components.
Therefore, we combine the two aforementioned processes into
one SMDP as shown in Fig. 5. In the new SMDP, the state
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Fig. 5. State transition diagram for the joint SMDP

set is S = {(i, j)|0 6 i 6 Qt, 0 6 j 6 Qp}, and the action
set is Ai,j = {(k,m)|Rb,k ∈ A

(t)
i , fm ∈ A

(p)
j }. Since all

the events in the two processes are independent, the transition
probabilities, denoted by p

(k,m)
(i,j),(i′,j′)’s, can be calculated s-

traightforwardly. Also, we can calculate the average transition
time for a state, denoted by τ

(k,m)
(i,j) . For instance, τ (k,m)

(i,j) =

1/(λ+ µt(k) + µp(m)) for 1 6 i 6 Qt − 1, 1 6 j 6 Qp − 1.
For a given policy π, the proposed SMDP is irreducible,

aperiodic, and positive recurrent, and has only a finite number
of states. Hence, the system will eventually reach a steady
state where the probability that any specific state is observed
remains constant and is irrelevant to the initial state of the
system. We denote the steady state probability of state (i, j)
under policy π, by p̃π(i,j).

B. Problem formulation
Since a user is usually concerned about both the service

quality and the battery life-time, we use a linear combination
of the average processing latency and the average energy
loss per request as the cost function, denoted by C(poff , π).
C(poff , π) can be calculated as

C(poff , π) = D̄(poff , π) + kE · Ēeq(poff , π) (15)

where D̄(poff , π) is the average processing latency per re-
quest, Ēeq(poff , π) is the average energy loss of the battery
per request, and kE is the coefficient that controls the trade-
off between the average latency and energy loss. The value
of kE may vary for different mobile devices or for different
type of users. In general, we can optimize D̄(poff , π) and
set Ēeq(poff , π) as constraint, or vice versa, using the same
optimization algorithm as shall be discussed in Section IV-C.

According to Little’s Theorem [26], the average processing
latency for a locally executed request, denoted by D̄p(poff , π),
can be calculated as

D̄p(poff , π) =
∑
i,j

j · p̃πi,j/λp (16)

On the other hand, an offloaded request will be transmitted
to the cloud for execution and then be transmitted back. The
average processing latency for an offloaded request, denoted
by D̄t(poff , π), can be calculated as

D̄t(poff , π) =
∑
i,j

i · p̃πi,j/λt + (T̄ps +RTT ) (17)

where T̄ps = 1/[µs(1−ρs)] is the average processing time for
a request on the server, and RTT is the round trip time for the
request. Finally, D̄(poff , π) can be calculated as

D̄(poff , π) = poff D̄t(poff , π) + (1− poff )D̄p(poff , π) (18)

Ēeq(poff , π) can be calculated using the average value of
Ieq , denoted by Īeq , as

Ēeq(poff , π) = VOC · Īeq/λ (19)

For given action pair (k,m), the equivalent discharging cur-
rent, denoted by I

(k,m)
eq can be calculated using the value of

P
(k,m)
total as in Eqn. (2). Since P

(k,m)
total is a random variable,

I
(k,m)
eq is also a random variable. Based on Eqn. (13), the mean

value of I(k,m)
eq , denoted by Ī(k,m)

eq , can be calculated as

Ī(k,m)
eq = (Iref )1−γc ·∫ [

Iin(Pmp + P kt + Px)
]γc · fPx(Px; k,m)dPx (20)

where fPx
(Px; k,m) is the probability density function of the

power consumption of other modules (that cannot be controlled
directly) when action pair (k,m) is taken, and the function
Iin(P ) is given by

Iin(P ) =
1

2Rin

(
VOC −

√
(VOC)2 − 4P ·Rin

ηc

)
(21)

which is derived from Eqn. (10). Īeq can be calculated as
the weighted average of Ī(k,m)

eq where the relative weights are
functions of the policy π.

It can be seen from above that the overall cost function,
C(poff , π), is a function of the offloading probability poff
and policy π. So the objective is to find the optimal offloading
probability p∗off and the optimal control policy π∗, satisfying

p∗off = argmin
poff

min
π
C(poff , π) (22)

π∗ = argmin
π

C(p∗off , π) (23)

As discussed in Section III-C, the SoC of the battery
decreases through the discharging process, causing VOC and
Rin to change continuously in the optimization problem for-
mulation. However, the typical battery life time is much longer
than the processing latency of a request. Therefore, we divide
the whole discharging process into a series of sections. In each
section, we see the SoC (and VOC and Rin) as a constant value
in the optimization problem. The accuracy degradation will be
negligible by setting the duration of a section small enough.

C. Solution method
The optimal offloading probability poff and the optimal

policy π are found using an iterative method comprised of a
outer loop to find the optimal poff , and a inner kernel algorithm
to find the optimal policy π with the given poff value.

We first discuss about the kernel algorithm. With given poff
value, all the parameters in the SMDP including the transition
probabilities are known to us. Therefore, the problem to find
the optimal π can be transformed into a Markov renewal
programming problem [27]. We formulate the optimization
problem as follows:

Find f (k,m)
(i,j)
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Minimize C(poff )
Subject to∑

i′,j′,k,m f
(k,m)
(i′,j′) · p

(k,m)
(i′,j′),(i,j) =

∑
k,m f

(k,m)
(i,j) ,∀(i, j) (24)∑

i,j,k,m f
(k,m)
(i,j) · τ

(k,m)
(i,j) = 1 (25)

f
(k,m)
(i,j) > 0, ∀(i, j), (k,m) (26)

where f (k,m)
(i,j) is the frequency that the system enters the state

(i, j) and action (k,m) is taken, and C(poff ) is the cost
function calculated with a specified poff value. The relationship
between f (k,m)

(i,j) and p̃π(i,j) is given by

p̃π(i,j) =
∑
k,m

f
(k,m)
(i,j) · τ

(k,m)
(i,j) (27)

Combining Eqn. (15), (16), (17), (18), (19), and (27), C(poff )
is given by

C(poff ) =
1

λ

∑
i,j,k,m

(
i+ j + kEVOC Ī

(k,m)
eq

)
f
(k,m)
(i,j) τ

(k,m)
(i,j)

+poff · {1/ [µs(1− ρs)] +RTT}
(28)

Constraint (24) addresses the balance condition for the system
in the steady state. Constraint (25) normalizes the sum of the
steady-state probabilities in all states. Constraint (26) limits
each frequency value to be non-negative. Note that now the
objective function and the constraints are all transformed into
linear functions of the optimization variables. This is a linear
programming problem that can be solved using standard solver
such as the MOSEK [28]. After all the f (k,m)

(i,j) values are found,
we formulate the optimal policy π using standard methods as
mentioned in [29].

Once we know how to find the optimal policy π with
any given poff , the problem in the outer loop of finding
p∗off becomes a one-dimensional unconstrained optimization
problem. In general, C(poff ) is a quasi-convex (unimodal)
function of poff between 0 and 1 with a unique minimum point.
Therefore, we apply some heuristic searching technique, such
as golden section search [30], to select the poff value in each
iteration and find the optimal p∗off .

We can apply this algorithm in an online manner, by
monitoring the SoC and recalculating the solution every time
when the SoC change exceeds a predefined threshold value
compared to the SoC used to calculate the current solution.
To reduce the online computation complexity, we can pre-
calculate the optimal solutions under different SoC’s offline,
and store them into a lookup table for online use. In this way,
we can simply monitor the SoC change online and index the
optimal poff and π at different SoC levels along with battery
discharging.

V. EXPERIMENTAL RESULTS
We run a set of applications on the Qualcomm Snapdragon

Platform including Google search (web browsing), YouTube
(online video playing), AnTuTu Benchmark (a comprehensive
benchmark to test CPU, graphics, and I/O), and GLBenchmark
(a benchmark focused on graphics) and extract the power
profile of the device using Trepn. We monitor the CPU core
sensor to characterize the power consumption of the CPU and
the digital core sensor to characterize the power consumption

of the RF module. The probability density function, fPx
, in

Eqn. (20) is estimated using the sampling results of the sensors.
The simulation parameters are set as follows. The processor

can perform a 5-level DVFS at 1x, 1.25x, 1.5x, 1.75x, and
2x of the minimum frequency, and the dynamic power con-
sumption is proportional to the frequency to the power of 2.5.
The static power of the CPU is 100mW, and the total power
consumption of the five DVFS levels are 200mW, 275mW,
375mW, 505mW, 665mW, repectively. The RF transmitter has
an static power consumption of 250mW and can use either
QPSK or 16QAM modulation, with total power consumption
of 450mW and 700mW, respectively. The FER for the two
modulation schemes are set to 10−3 and 5 × 10−4. The
processing rate of the CPU running at the minimum frequency
is normalized to 1, and the transmission rate of QPSK is set to
8. The distribution of the power consumption of other modules
are derived as mentioned above. We scale this part of the
power consumption to have a mean value of 500mW. The
VOC and Rin are calculated using parameters in [21]. The
power conversion efficiency of the converters in the PDN is
0.7 and the Peukert’s constant, γc, is set to 1.05. The servers
in the cloud have a normalized processing rate of 20. The
coefficient, kE , in the cost function is set to 20W−1. The
normalized request generation rate, λ, varies from 0.6 to 2.0,
the SoC level varies from 0.1 to 1.0, and the normalized RTT
for a offloaded request varies from 0.4 to 1.4.

Our proposed algorithm is compared to a number of
baseline algorithms. Baseline 1–3 are baselines without DVFS
or computation offloading. Baseline 1 uses only the minimum
CPU frequency, Baseline 2 uses only the maximum CPU fre-
quency, and Baseline 3 uses only the 1.5x frequency. Baseline
4 supports DVFS but does not offload any request to the cloud.
In contrast, Baseline 5 offloads all the requests to the cloud.

Fig. 6 shows the simulation results when the SoC level is
set to 0.5, the normalized RTT is set to 0.6, and the normalized
request generation rate varies from 0.6 to 2.0. Fig. 7 shows the
simulation results when the request generation rate is set to
1.5, the normalized RTT is set to 0.6, and the SoC level varies
from 0.1 to 1.0. In all cases, the proposed algorithm results in
the lowest total cost. Although Baseline 5 also seems to be an
acceptable algorithm in the simulation results presented above,
its performance can degrade significantly when offloading
requests to the cloud suffers from high latency. Fig. 8 shows
the simulation results when the request generation rate is set
to 1.5, the SoC level is set to 0.5, and the normalized RTT
varies from 0.4 to 1.4. Since Baseline 1–4 do not support
computation offloading, their performances remain the same
all the time when the RTT changes. Therefore, we only show
Baseline 4 which has the lowest cost among the four. It can be
seen that the proposed algorithm still outperforms the baseline
algorithms and both baseline algorithms result significantly
higher cost under either high RTT’s or low RTT’s.

VI. CONCLUSION
In this paper, we address the problem of optimal request

processing and offloading control in an MCC system in which
control decisions on the mobile device can be made upon the
processor applying DVFS and the RF module which supports
different modulation schemes and bit rates. The power con-
sumption of other components of the device is estimated based
on the power profiling result conducted on the Qualcomm
Snapdragon Platform MSM8660. A realistic battery model is
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Fig. 6. Simulation result with varying request generation rate

Fig. 7. Simulation result with varying SoC

Fig. 8. Simulation result with varying RTT

used to estimate the impact of the power consumption on
the battery life time. We formulate the optimization problem
using an SMDP and propose the optimal solution to find the
optimal offloading probability and control policy. Experimental
results demonstrate that the proposed solution consistently
outperforms some baseline algorithms.
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