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ABSTRACT 
Compared to conventional internal combustion engine (ICE) 
propelled vehicles, hybrid electric vehicles (HEVs) can achieve 
both higher fuel economy and lower pollution emissions. The 
HEV consists of a hybrid propulsion system containing one ICE 
and one or more electric motors (EMs). The use of both ICE and 
EM increases the complexity of HEV power management, and 
therefore requires advanced power management policies to 
achieve higher performance and lower fuel consumption. Towards 
this end, our work aims at minimizing the HEV fuel consumption 
over any driving cycle (without prior knowledge of the cycle) by 
using a reinforcement learning technique. This is in clear contrast 
to prior work, which requires deterministic or stochastic 
knowledge of the driving cycles. In addition, the proposed 
reinforcement learning technique enables us to (partially) avoid 
reliance on complex HEV modeling while coping with driver 
specific behaviors. To our knowledge, this is the first work that 
applies the reinforcement learning technique to the HEV power 
management problem. Simulation results over real-world and 
testing driving cycles demonstrate the proposed HEV power 
management policy can improve fuel economy by 42%. 

Categories and Subject Descriptors 
B.8.2 [Performance and Reliability]: Performance Analysis and 
Design Aids 

General Terms 
Algorithms, Management, Performance, Design. 

Keywords 
Hybrid electric vehicle (HEV), power management, reinforcement 
learning. 

1. INTRODUCTION 
Automobiles have contributed significantly to the development of 
modern society by satisfying many of the requirements for 
mobility in everyday life. However, large amounts of fuel 
consumption and pollution emissions resulting from the 
increasing number of automobiles in use around the world have 
drawn attention of researchers and developers towards more 
energy efficient and environmentally friendly automobiles. 
Hybrid electric vehicles (HEVs) represent a promising approach 
towards sustainable mobility. In contrast to conventional internal 
combustion engine (ICE) propelled vehicles, HEVs can 
simultaneously achieve higher fuel economy and lower pollution 
emissions [1], [2], [3]. 

The HEV features a hybrid propulsion system comprised of an 
ICE with an associated fuel tank and an electric motor (EM) with 
an associated electrical energy storage system (e.g., batteries), 
both of which may be coupled directly to the drivetrain. The ICE 
consumes fuel to provide the primary propulsion, whereas the EM 
converts the stored electrical energy to the secondary propulsion 
when extra torque is needed. Besides assisting the ICE with extra 
torque, the EM also serves as a generator for recovering kinetic 
energy during braking (known as regenerative braking) and 

collecting excess energy from the ICE during coasting. The 
introduction of the secondary propulsion by the EM allows for a 
smaller ICE design and makes HEVs more efficient than 
conventional ICE vehicles in terms of acceleration, hill climbing, 
and braking energy utilization [4], [5]. 

On the other hand, the use of both ICE and EM increases the 
complexity of HEV power management and advanced power 
management policy is required for achieving higher performance 
and lower fuel consumption. A power management policy for 
HEVs determines the power split between the ICE and EM to 
satisfy the speed and torque requirements and, meanwhile, to 
ensure safe and smooth operation of the involved power 
components (e.g., ICE, EM and batteries). Furthermore, a “good” 
power management policy should result in reduced fuel 
consumption and lower pollution emissions. Rule-based power 
management approaches have been designed based on heuristics, 
intuition, and human expertise [6], [7]. Although rule-based 
approaches are effective for real-time supervisory control, they 
may be far from being optimal. Dynamic programming (DP) 
techniques have been applied to the power management of various 
types of HEVs [8], [9], [10]. DP techniques can derive a globally 
optimal solution that minimizes the total fuel consumption during 
a whole driving cycle, which is given as a vehicle speed versus 
time profile for a specific trip. Unfortunately, the DP techniques 
require a priori knowledge of the driving cycles as well as 
detailed and accurate HEV modeling; therefore they are not 
applicable for real-time implementation. 

The equivalent consumption minimization strategy (ECMS) 
approach has been proposed to reduce the global optimization 
problem (as in DP techniques) to an instantaneous optimization 
problem [11]. However, the ECMS approach strongly depends on 
the equivalence factors, which convert the electrical energy 
consumption of EM into the equivalent fuel consumption of ICE. 
The equivalence factors are quite sensitive to the driving cycles. 
For instance, the equivalence factors that are suitable for a driving 
cycle may lead to poor performance for other driving cycles. To 
overcome this challenge, the adaptive-ECMS (A-ECMS) 
approach has been applied for HEV power management based on 
driving cycle prediction within a finite horizon [12]. Although the 
A-ECMS approach has good performance, the detailed driving 
cycle prediction method has been omitted. Gong et al. has 
provided a trip modeling method using a combination of 
geographical information systems (GISs), global positioning 
systems (GPSs), and intelligent transportation systems (ITSs) 
[13]. However, the driving cycle constructed by this trip modeling 
method is synthetic and not accurate enough to capture the real 
driving scenarios, such as the effect of traffic lights and some 
unforeseen circumstances. In [14] and [15], the authors proposed 
the stochastic control method for HEVs based on a Markov chain 
model of the driving cycles. This method does not rely on a priori 
knowledge of the driving cycles, but it is not adaptive to the 
dynamical driving conditions. 

Towards this end, our work aims at minimizing the HEV fuel 
consumption over any driving cycles. We propose to use the 
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reinforcement learning technique for deriving 
power management policy. Unlike some prev
which require complete or stochastic informati
cycles, in our method the HEV controller doe
prior information about the driving cycles and 
information about the HEV modeling. Conseque
define the state space, action space, and 
reinforcement learning technique such that the
reinforcement learning agent coincides wit
minimizing the HEV overall fuel consumption
TD( ߣ )-learning algorithm to derive the opti
management policy, due to its relatively higher
and higher performance in non-Markovian env
best of our knowledge, this is the first work
reinforcement learning technique to the HEV po
problem. Simulation results over real-world an
cycles demonstrate that the proposed HEV po
policy can improve fuel economy by 42%. 

2. HEV SYSTEM DESCRIPTION
By way of an example and without loss o
proposed power management policy is designe
(but not limited to) the parallel hybrid drivetr
displayed in Figure 1. In an HEV with th
drivetrain, i.e., a parallel HEV, the ICE and EM 
in parallel to drive the wheels. There are five d
modes in a parallel HEV, depending on the flow 
1) ICE only mode: wheels are driven only by t
2) EM only mode: wheels are driven only by th
3) Power assist mode: wheels are driven by 

EM. 
4) Battery charging mode: a part of the ICE 

EM as a generator to charge the battery pac
part of the ICE power drives the wheels. 

5) Regenerative braking mode: the wheels d
generator to charge the battery pack wh
braking. 

2.1 Internal Combustion Engine (
We describe a quasi-static ICE model [17] as 
consumption rate ሶ݉  (in g · sିଵ) of an ICE is a n
of the ICE speed ߱ூா  (in rad · sିଵ) and torqu
The fuel efficiency of an ICE is calculated by 

,ூாሺ߱ூாߟ  ூܶாሻ ൌ ሺ߱ூா · ூܶாሻ/ሺ ሶ݉  ·
where ܦ is the fuel energy density (in J · gିଵ). 

Figure 2 shows a contour map of the fuel efficie
the speed-torque plane. The number labeled wit
the corresponding ICE efficiency. It is a 1.0L 
modeled by the advanced vehicle simulator AD
ICE has a peak power of 50 kW and a peak effi
“good” power management policy should avo
point ሺ߱ூா, ூܶாሻ in the low efficiency region. 
the contour map is the maximum ICE torque
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2.2 Electric Motor (EM) 
Figure 3 presents a contour map of the 
the speed-torque plane. It is a permane
ADVISOR. The EM has a peak po
efficiency of 96% . Let ߱ாெ  and ாܶெ
speed and torque of the EM. When ாܶெ
motor; when ாܶெ ൏ 0 , the EM ope
efficiency of the EM is defined by 

,ாெሺ߱ாெߟ  ாܶெሻ ൌ ൜ሺ߱ாெ · ாܶெሻܲ௧௧/ሺ߱ாெ
where ܲ௧௧  is the output power ofாܶெ  0, the battery pack is discharg
value; when ாܶெ ൏ 0, the battery pack
negative value. Superimposed on t
maximum and minimum EM torqueாܶெ௫ሺ߱ாெሻ  and ாܶெሺ߱ாெሻ , respect
smooth operation of an EM, the follo
satisfied: 

 0  ߱ாெ  ߱ாெ
 ாܶெሺ߱ாெሻ  ாܶெ  ாܶ
2.3 Drivetrain Mechanics 
In what follows, we discuss a simplifi
drivetrain model as in [18], [19]. 
describe the drivetrain mechanics, 
coupling between different component
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• Torque relation 
 ௪ܶ ൌ ܴሺ݇ሻ · ሺ ூܶா  ߩ · ாܶெ · ሺߟሻఈሻ · ሺߟሻఉ. (8) ߱௪ and ௪ܶ are the wheel speed and torque, respectively. ܴሺ݇ሻ 
is the gear ratio of the ݇-th gear. The ߩ is the reduction gear 
ratio. The ߟ and ߟ are the reduction gear efficiency and gear 
box efficiency, respectively. ߙ  equals 1  if ாܶெ  0 , and െ1 
otherwise. ߚ  equals 1  if ூܶா  ߩ · ாܶெ · ൫ߟ൯ఈ  0 , and െ1 otherwise. 

2.4 Vehicle Dynamics 
The vehicle is considered as a rigid body with four wheels and the 
vehicle mass is assumed to be concentrated in a single point. The 
following force balance equation describes the vehicle dynamics: 

 ݉ · ܽ ൌ ோ்ܨ െ ܨ െ ோܨ െ  ோ is the்ܨ . (9) ݉ is the vehicle mass, ܽ is the vehicle acceleration, andܨ
total tractive force. The force due to road slope is given by 

ܨ  ൌ ݉ · ݃ · sin  (10) ,ߠ

where ߠ is the road slope angle. The rolling friction force is given 
by 

ோܨ  ൌ ݉ · ݃ · cos ߠ ·  ோ, (11)ܥ

where ܥோ is rolling friction coefficient. The air drag force is give 
by 

ܨ  ൌ 0.5 · ߩ · ܥ · ிܣ ·  ଶ, (12)ݒ

where ߩ is air density, ܥ is air drag coefficient, ܣி is the vehicle 
frontal area, and ݒ is the vehicle speed. Given ݒ, ܽ, and ߠ , the 
total tractive force ்ܨோ can be derived using (9)~(12). Then, the 
wheel speed and torque are related to ்ܨோ  ௪ byݎ and wheel radius ,ݒ ,

 ߱௪ ൌ  ௪, (13)ݎ/ݒ

 ௪ܶ ൌ ோ்ܨ ·  ௪. (14)ݎ

2.5 Backward-Looking Optimization 
In this work, the backward-looking optimization approach 
[8]~[15] is adopted, which implies that the HEV controller 
determines the operation of ICE and EM, so that the vehicle meets 
the target performance (speed ݒ and acceleration ܽ) specified in 
benchmark driving cycles [21]. In reality, the drivers determine 
the speed ݒ  and power demand ௗ ൌ ߱௪ · ௪ܶ  profiles for 
propelling the HEV (through pressing the acceleration or brake 
pedal.) The backward-looking optimization is equivalent to actual 
HEV management because ௗ  and ܽ  satisfy a relationship 
specified in Section 2.4. 

With given values of vehicle speed ݒ and acceleration ܽ (or power 
demand ௗ ), the required wheel speed ߱௪  and torque ௪ܶ 
satisfy (9)~(14). In addition, the five variables, i.e., the ICE speed ߱ூா and torque ூܶா, the EM speed ߱ாெ and torque ாܶெ, and the 
gear ratio ܴሺ݇ሻ, should satisfy (7) and (8) to support the required 
wheel speed and torque. The HEV controller chooses the battery 

output power ܲ௧௧ (or equivalently, battery charging/discharging 
current) and the gear ratio ܴሺ݇ሻ as the control variables. Then, the 
rest of variables (i.e., ߱ூா , ூܶா , ߱ாெ , and ாܶெ ) become 
dependent (associate) variables, the values of which are 
determined by ܲ௧௧  and ܴሺ݇ሻ . The results of the HEV power 
management policy are the fuel consumption rate of the ICE. 

3. REINFORCEMENT LEARNING 
BACKGROUND 
Reinforcement learning provides a mathematical framework for 
discovering or learning strategies that map situations onto actions 
with the goal of maximizing a reward function [20]. The learner 
and decision-maker is called the agent. The thing it interacts with, 
comprising everything outside the agent, is called the 
environment. The agent and environment interact continually, the 
agent selecting actions and the environment responding to those 
actions and presenting new situations to the agent. The 
environment also gives rise to rewards, which are special 
numerical values that the agent tries to maximize over time. 

Figure 4 illustrates the agent-environment interaction in 
reinforcement learning. Specifically, the agent and environment 
interact at each of a sequence of discrete time steps, i.e., ݐ ൌ0, 1, 2, 3, … . At each time step ݐ , the agent receives some 
representation of the environment’s state, i.e., ݏ௧ א ࣭, where ࣭ is 
the set of possible states, and on that basis selects an action, i.e., ܽ௧ א ࣛሺݏ௧ሻ ك ࣛ, where ࣛሺݏ௧ሻ is the set of actions available in 
state ݏ௧  and ࣛ  is the set of all possible actions. One time step 
later, in part as a consequence of its action, the agent receives a 
numerical reward, i.e., ݎ௧ାଵ א ࣬, and finds itself in a new state, 
i.e., ݏ௧ାଵ. 

A policy, denoted by ߨ, of the agent is a mapping from each state ݏ א ࣭ to an action ܽ א ࣛ that specifies the action ܽ ൌ  ሻ thatݏሺߨ
the agent will choose when the environment is in state ݏ. The 
ultimate goal of an agent is to find the optimal policy, such that 

 ܸగሺݏሻ ൌ ∑ሼܧ ஶୀߛ · ௧ݏ|௧ାାଵݎ ൌ  ሽ (15)ݏ

is maximized for each state ݏ א ࣭. The value function ܸగሺݏሻ is the 
expected return when the environment starts in state ݏ at time step ݐ  and follows policy ߨ  thereafter. ߛ  is a parameter, 0 ൏ ߛ ൏ 1 , 
called the discount rate that ensures the infinite sum (i.e., ∑ ஶୀߛ ·  ߛ ,௧ାାଵ) converges to a finite value. More importantlyݎ
reflects the uncertainty in the future. ݎ௧ାାଵ is the reward received 
at time step ݐ  ݇  1. 

4. REINFORCEMENT LEARNING BASED 
HEV POWER MANAGEMENT 

4.1 Motivations 
Reinforcement learning provides a powerful solution to the 
problems in which (i) different actions should be taken according 
to the change of system states, and the future state depends on 
both the current state and the selected action; (ii) an expected 
cumulative return instead of an immediate reward will be 
optimized; (iii) the agent only needs knowledge of the current 
state and the reward it receives, while it needs not have 
knowledge of the system input in prior or the detailed system 
modeling; and (iv) the system might be non-stationary to some 
extent. The second, third, and fourth properties differentiate 
reinforcement learning from other machine learning techniques, 
model-based optimal control and dynamic programming, and 
Markov decision process-based approach, respectively. 

The HEV power management problem, on the other hand, 
possesses all of the four above-mentioned properties. (i) During a 
driving cycle, the change of vehicle speed, power demand, and 

tats tr

1+tr
1+ts

Figure 4. The agent-environment interaction. 

34



battery charge level necessitates different operation modes and 
actions as discussed in Section 2, and also the future battery 
charge level depends on the battery charging/discharging current. 
(ii) The HEV power management aims at minimizing the total 
fuel consumption during a whole driving cycle rather than the fuel 
consumption rate at a certain time step. (iii) The HEV power 
management agent does not have a priori knowledge of a whole 
driving cycle, while it has only the knowledge of the current 
vehicle speed and power demand values and the current fuel 
consumption rate as a result of the action taken. (iv) The actual 
driving cycles are non-stationary [21]. Therefore, the 
reinforcement learning technique better suits the HEV power 
management problem than other optimization methods. 

4.2 State, Action and Reward of HEV Power 
Management 
4.2.1 State Space 
We define the state space of the HEV power management 
problem as a finite number of states, each represented by the 
power demand, vehicle speed, and battery pack stored charge 
levels: 

 ࣭ ൌ ሼݏ ൌ ሾௗ, ,ݒ ௗ|ሿ்ݍ א ௗ࣪, ݒ א ࣰ, ݍ א ࣫ሽ, (16) 

where ௗ is the power demand for propelling the HEV1, which 
can be interpreted from the positions of the acceleration pedal and 
the brake pedal; ݍ is the battery pack stored charge; ௗ࣪, ࣰ, and ࣫ are respectively the finite sets of power demand levels, vehicle 
speed levels, and battery pack stored charge levels. Discretization 
is required when defining these finite sets. In particular, ࣫  is 
defined by discretizing the range of the battery pack stored charge 
i.e., ሾݍ,  :௫ሿ into a finite number of charge levelsݍ

 ࣫ ൌ ሼݍଵ, ,ଶݍ … ,  ேሽ, (17)ݍ

where ݍ  ଵݍ ൏ ଶݍ ൏ ڮ ൏ ேݍ  ௫ݍ ݍ .  and ݍ௫  are 
40% and 80% of the battery pack capacity, respectively, in the 
SOC-sustaining power management for ordinary HEVs [8]~[10]. 
On the other hand, ݍ and ݍ௫ are 0% and 80% of the battery 
pack capacity, respectively, in the SOC-depletion power 
management for plug-in HEVs (PHEVs) [13], in which the battery 
pack can be recharged from the power grid during parking time. 

4.2.2 Action Space 
We define the action space of the HEV power management 
problem as a finite number of actions, each represented by the 
discharging current of the battery pack and gear ratio values: 

 ࣛ ൌ ሼܽ ൌ ሾ݅, ܴሺ݇ሻሿ்|݅ א ,ܫ ܴሺ݇ሻ א ܴሽ, (18) 

where an action ܽ ൌ ሾ݅, ܴሺ݇ሻሿ்  taken by the agent is to discharge 
the battery pack with a current value of ݅ and choose the ݇-th gear 
ratio2 . The set ܫ  contains within it a finite number of current 
values in the range of ሾെܫ௫, ௫ሿܫ . Please note that ݅  0 
denotes discharging the battery pack; ݅ ൏ 0 denotes charging the 
battery pack; and ݅ ൌ 0  denotes idle. The set ܴ  contains the 
allowable gear ratio values, which depend on the drivetrain 

                                                                 
1  The power demand ௗ  instead of vehicle acceleration is 

selected as a state variable because: (i) the power demand can 
be interpreted from positions of acceleration and brake pedals, 
and (ii) experiments show that the power demand has higher 
correlation with actions in the system. 

2 According to the discussions in Section 2.5, the selected action 
will be sufficient to determine the values of all dependent 
variables in HEV control. 

design. Usually, there are four or five gear ratio values in total [7], 
[14]. 

The above definition of the action space enables that the 
reinforcement learning agent does not require detailed HEV 
modeling (we will elaborate this in Section 4.4). The complexity 
and convergence speed of reinforcement learning algorithms are 
proportional to the number of state-action pairs [20]. In order to 
reduce computation complexity and accelerate convergence, we 
modify the action space to reduce the number of actions based on 
the HEV modeling. The reduced action space only contains 
charging/discharging current values of the battery pack: 

 ࣛ ൌ ሼܽ ൌ ሾ݅ሿ|݅ א  ሽ. (19)ܫ

The inherent principle of reducing the action space is: with the 
selected action ܽ ൌ ሾ݅ሿ, we can derive the best-suited gear ratio 
analytically when we have the knowledge of the HEV modeling. 
More precisely, we derive the best-suited gear ratio by solving the 
following fuel optimization (FO) problem: 

Given the values of the current state ݏ ൌ ሾௗ, ,ݒ ሿ்ݍ  and the 
current action ܽ ൌ ሾ݅ሿ, find the gear ratio ܴሺ݇ሻ to minimize the 
fuel consumption rate ሶ݉  subject to (2)~(8). 

Based on the current state ݏ ൌ ሾௗ, ,ݒ ܽ ሿ் and the current actionݍ ൌ ሾ݅ሿ, ߱௪, ௪ܶ, and battery output power ܲ௧௧ are calculated 
according to 

 ߱௪ ൌ  ௪, (20)ݎ/ݒ

 ௪ܶ ൌ ௗ ·  (21) ,ݒ/௪ݎ

and 

 ܲ௧௧ ൌ ܸை · ݅ െ ܴ௧௧ · ݅ଶ, (22) 

where ܸை  is the open-circuit voltage of the battery pack and ܴ௧௧ is the internal resistance of the battery pack. 

To solve the FO problem, for each of the possible ܴሺ݇ሻ values, 
we first calculate ߱ூா  and ߱ாெ  using (7), next calculate ாܶெ 
using (4) while satisfying (5)~(6), and then calculate ூܶா  using 
(8) while satisfying (2)~(3). With ߱ூா  and ூܶா , the fuel 
consumption rate ሶ݉   is obtained based on the ICE model. We 
pick the ܴሺ݇ሻ value that results in the minimum ሶ݉  i.e., ሶ݉ ௧. 

We will refer to the action space shown in (18) and (19) as the 
original action space and the reduced action space, respectively, 
in the following discussions. 

4.2.3 Reward 
We define the reward ݎ that the agent receives after taking action ܽ while in state ݏ as the negative of the fuel consumption in that 
time step i.e., െ ሶ݉ ௧ · ∆ܶ, where ∆ܶ is the length of a time step. 
Remember from Section 3 that the agent in reinforcement learning 
aims at maximizing the expected return i.e., the discounted sum of 
rewards. Therefore, by using the negative of the fuel consumption 
in a time step as the reward, the total fuel consumption will be 
minimized while maximizing the expected return. 

4.3 TD(ࣅ)-Learning Algorithm for HEV 
Power Management 
To derive the optimal HEV power management policy, we 
employ a specific type of reinforcement learning algorithm, 
namely the TD(ߣ)-learning algorithm [22], due to its relatively 
higher convergence rate and higher performance in non-
Markovian environment. In the TD(ߣ )-learning algorithm, a ܳ 
value, denoted by ܳሺݏ, ܽሻ, is associated with each state-action pair ሺݏ, ܽሻ, which approximates the expected discounted cumulative 
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reward of taking action ܽ at state ݏ. There are two basic steps in 
the TD( ߣ )-learning algorithm: action selection and ܳ -value 
update.  

4.3.1 Action Selection 
A straightforward approach for action selection is to always 
choose the action with the highest ܳ value. If we do so, however, 
we are at the risk of getting stuck in a sub-optimal solution. A 
judicious reinforcement learning agent should exploit the best 
action known so far to gain rewards while in the meantime 
explore all possible actions to find a potentially better choice. We 
address this exploration versus exploitation issue by breaking the 
learning procedure into two phases: In the exploration phase, ߝ-
greedy-policy is adopted, i.e., the current best action is chosen 
only with probability of 1 െ ߝ . In the exploitation phase, the 
action with the highest ܳ value is always chosen.  

4.3.2 ܳ-Value Update 
Suppose that action ܽ௧  is taken in state ݏ௧  at time step ݐ , and 
reward ݎ௧ାଵ  and new state ݏ௧ାଵ  are observed at time step ݐ  1. 
Then at time step ݐ  1, the TD(ߣ)-learning algorithm updates the ܳ value for each state-action pair ሺݏ, ܽሻ as: 

 ܳሺݏ, ܽሻ ՚ ܳሺݏ, ܽሻ  ߙ · ݁ሺݏ, ܽሻ ·  (23) ,ߜ

where ߙ  is a coefficient controlling the learning rate, ݁ሺݏ, ܽሻ is 
the eligibility of the state-action pair ሺݏ, ܽሻ, and ߜ is calculated as 

ߜ  ՚ ௧ାଵݎ  ߛ maxᇱ ܳሺݏ௧ାଵ, ܽԢሻ െ ܳሺݏ௧, ܽ௧ሻ. (24)  

In (24), ߛ is the discount rate. 

At time step ݐ  1, the eligibility ݁ሺݏ, ܽሻ of each state-action pair 
is updated by 

 ݁ሺݏ, ܽሻ ՚ ൜ߛ · ߣ · ݁ሺݏ, ܽሻ  1, ݏ ൌ ܽ ځ ௧ݏ ൌ ܽ௧ߛ · ߣ · ݁ሺݏ, ܽሻ, ݁ݏ݅ݓݎ݄݁ݐ                   (25) 

to reflect the degree to which the particular state-action pair has 
been chosen in the recent past, where ߣ is a constant between 0 
and 1. In practice, we do not have to update ܳ  values and 
eligibility ݁ of all state-action pairs. We only keep a list of ܯ most 
recent state-action pairs since the eligibility of all other state-
action pairs is at most ߣெ , which is negligible when ܯ is large 
enough. 

4.3.3 Algorithm Description 
The pseudo code of the TD(ߣ)-learning algorithm for HEV power 
management is summarized as follows. 

TD(ࣅ)-Learning Algorithm for HEV Management: 
Initialize ܳሺݏ, ܽሻ arbitrarily for all the state-action pairs. 
For each time step ݐ: 

Choose action ܽ௧  for state ݏ௧  using the exploration-
exploitation policy discussed in Section 4.3.1. 
Take action ܽ௧, observe reward ݎ௧ାଵ and the next state ݏ௧ାଵ. ߜ ՚ ௧ାଵݎ  ߛ maxᇱ ܳሺݏ௧ାଵ, ܽԢሻ െ ܳሺݏ௧, ܽ௧ሻ. ݁ሺݏ௧, ܽ௧ሻ ՚ ݁ሺݏ௧, ܽ௧ሻ  1. 
For all state-action pair ሺݏ, ܽሻ: ܳሺݏ, ܽሻ ՚ ܳሺݏ, ܽሻ  ߙ · ݁ሺݏ, ܽሻ · ,ݏሺ݁ .ߜ ܽሻ ՚ ߛ · ߣ · ݁ሺݏ, ܽሻ. 
End 

End 

4.4 Model-Free Property Analysis 
Theoretically, the reinforcement learning technique could be 
model-free, i.e., the agent does not require detailed system model 

to choose actions as long as it can observe the current state and 
reward as a result of an action previously taken by it. For the HEV 
power management problem, model-free reinforcement learning 
means that the controller (agent) should be able to observe the 
current state (i.e., power demand, vehicle speed, and battery pack 
charge levels) and the reward (i.e., the negative of fuel 
consumption in a time step) as a result of an action (i.e., battery 
pack discharging current and gear ratio selection), while the 
detailed HEV models are not needed by the controller. Now let us 
carefully examine whether the proposed reinforcement learning 
technique could be exactly model-free (or to which extent it could 
be model-free) in practical implementations. 

For the reinforcement learning technique using the original 
action space: To observe the current state, the agent can use 
sensors to measure power demand level and the vehicle speed. 
And also, the reward can be obtained by measuring the fuel 
consumption. However, the battery pack charge level cannot be 
obtained directly from online measurement during HEV driving, 
since the battery pack terminal voltage changes with the 
charging/discharging current and therefore it could not be an 
accurate indicator of the battery pack stored charge level [23]. To 
address this problem, a battery pack model together with the 
Coulomb counting method [24] is needed by the agent. In 
summary, the reinforcement learning technique with the original 
action space is mostly model-free, i.e., only the battery pack 
model is needed.  

For the reinforcement learning technique using the reduced 
action space: Given the current state and the action 
(charging/discharging current) taken, the agent should decide the 
gear ratio by solving the FO problem, where the ICE, the EM, the 
drivetrain mechanics and the battery pack models are needed. On 
the other hand, the vehicle dynamics model (discussed in Section 
2.4) is not needed by the agent. In summary, the reinforcement 
learning technique with the reduced action space is partially 
model-free. 

Table 1 summarizes the models needed by the agent for 
reinforcement learning technique with the original and reduced 
action spaces. 

Table 1. Models needed for the original and reduced action 
spaces. 

 Original action 
space 

Reduced 
action space 

ICE model no needed 
EM model no needed 
Drivetrain mechanics model no needed 
Vehicle dynamics model no no 
Battery pack model needed needed 
Future driving cycle profile no no 

4.5 Complexity and Convergence Analysis 
The time complexity of the TD(ߣ)-learning algorithm in a time 
step is ܱሺ|ࣛ|   is ܯ ሻ, where |ࣛ| is the number of actions andܯ
the number of the most recent state-action pairs kept in memory. 
Generally, |ࣛ| and ܯ are set to be less than 100. Therefore, the 
algorithm has negligible computation overhead when 
implementing in the state-of-the-art micro-controller/processors.  

As for the convergence speed, normally, the TD( ߣ )-learning 
algorithm can converge within ܮ  time steps, where ܮ  is 
approximately three to five times of the number of state-action 
pairs. The total number of states could be as large as | ௗ࣪| · |ࣰ| ·|࣫| . However, some of the states do not have any physical 
meanings and will never be encountered by the system. And only 10% of the states are valid in the simulation. In summary, the 
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TD(ߣ)-learning algorithm can converge after t
driving, which is much shorter than the total life
To further speed up the convergence, the ܳ va
initialized by the manufacturers with optimized v

4.6 Application-Specific Impleme
The actual implementation of the TD(ߣ)-learn
HEV power management can be applicat
example, the range of the battery pack stored c
state space for PHEVs (SoC-depletion mode) 
that for ordinary HEVs (SoC-sustaining mode
case, it is more desirable to use up the energy sto
pack by the end of a trip since the battery can b
the power grid. Also, the parameters (e.g., ߛ ,ߙ, 
TD(ߣ)-learning algorithm can be modified for 
trips. For instances, the HEV controller can use
parameters for urban trips from those for h
course, the controller does not need the know
driving cycle profiles in prior. 

5. EXPERIMENTAL RESULTS 
We simulate the operation of an HEV based o
Hybrid, the model of which is developed in AD
parameters are summarized in Table 2. We comp
optimal power management policy derived b
learning with the rule-based power managemen
in [7] using both real-world and testing driving 
cycle is given as a vehicle speed versus time pro
trip. The driving cycles may come from real 
from specialized generation for testing purposes
use the real-world and testing driving cycles pro
organizations and projects such as U.S. EPA
Protection Agency), E.U. MODEM (Modeling 
Fuel Consumption in Urban Areas project) and
(Assessment and Reliability of Transport Emis
Inventory Systems project). 

Table 2. Honda Insight Hybrid key pa

Vehicle ܥ 0.32 ICE Max po
Vehicle ܣி (mଶ) 1.48 ICE Max To
Vehicle ݎ௪ (m) 0.3 EM Max pow
Vehicle ݉ (kg) 1000 Battery capa
Reduction gear ratio ߩ 1.4 Battery volta
 

We improve the battery pack model used in A
into account the rate capacity effect and the
Specifically, the majority of literature o
management adopts a simple battery pack model

Figure 5. ICE operation points of an ordin
the proposed and rule-based poli

two or three-hour 
fespan of an HEV. 
alues can also be 
values. 

ntations 
ning algorithm for 
tion-specific. For 
charge level in the 

is different from 
e). In the former 
ored in the battery 
be recharged from 
and ߣ) used in the 
different types of 
e different sets of 

highway trips. Of 
wledge of detailed 

on Honda Insight 
DVISOR [16]. Key 

pare our proposed 
by reinforcement 

nt policy described 
cycles. A driving 

ofile for a specific 
measurements or 

s. In this work, we 
ovided by different 
A (Environmental 
of Emissions and 

d E.U. ARTEMIS 
ssion Models and 

rameters. 

ower (kW) 50 
orque (Nm) 89.5 
wer (kW) 10 

acity (Ah) 6.5 
age (V) 144 

ADVISOR to take 
e recovery effect. 
on HEV power 
l as follows [3]: 

௧ݍ  ൌ ݍ െ ∑ ௧ୀܫ
where ݍ௧ is the amount of charge store
end of time step ݐ ݍ ,  is the amou
battery pack at the beginning of time 
current of the battery pack at time st
charging), and ∆ܶ  is the length of a
model ignores the rate capacity effe
significant power loss when the battery
current is high [23]. We know
charging/discharging current is high
acceleration, and therefore the rate 
considered carefully. The rate capacity
battery pack is discharging (ܫ  0), th
rate inside the battery pack is higher th
is charging (ܫ ൏ 0), the actual charge
battery pack is lower than |ܫ|. In addit
also ignores the recovery effect, whic
pack can partially recover the charge lo
relaxation time is allowed in between d

Table 3. Fuel consumption of an
proposed and rule-bas

Driving Cycle Proposed Policy Ru
IM240 68.5 g 
LA92 426.6 g 
NEDC 229.4 g 
NYCC 38.8 g 
HWFET 223.7 g 
MODEM_1 151.7 g 
MODEM_2 246.5 g 
MODEM_3 75.8 g 
Artemis_urban 128.9 g 
Artemis_rural 460.3 g 
total 2050.2 g 
 

First, we test the fuel consumption o
battery SOC-sustaining mode usin
management policy and the rule
consumption over some driving cycles
We can observe that the proposed pol
fuel consumption and the maxim
consumption is as high as 54.9%. The
that the proposed policy can reduce28.8% on average. We also compare t
the proposed policy and the rule-base
world and testing driving cycles in Tab
achieves an MPG value of 48 and the p
MPG value of 67. Therefore, the pro

Figure 6. ICE operation points 
proposed and rule-bas

 
ary HEV from 
icies. 

· ∆ܶ, (26) 

ed in the battery pack at the 
unt of charge stored in the 

step 0, ܫ௧ is the discharging 
tep ܫ) ݐ௧ ൏ 0 means battery 

a time step. However, this 
ct, which causes the most 
y pack charging/discharging 

w that the battery pack 
h during deceleration and 
capacity effect should be 

y effect specifies that if the 
he actual charge decreasing 
han ܫ; and if the battery pack 
e increasing rate inside the 
tion, the battery model (26) 
ch specifies that the battery 
oss in previous discharges if 
discharges [23]. 

n ordinary HEV using 
sed policies. 

ule-based Policy Reduction
92.2 g 25.7 %

585.3 g 27.1 %
319.8 g 28.3 %
86.1 g 54.9 %

364.0 g 38.5 %
228.6 g 33.6 %
344.9 g 28.5 %
137.1 g 44.7 %
220.5 g 41.5 %
499.7 g 7.9 %

2878.2 g 28.8 %

of an ordinary HEV in the 
ng the proposed power 
-based policy. The fuel 
s is summarized in Table 3. 
licy always results in lower 
mum reduction in fuel 
e last row in Table 3 shows 
e the fuel consumption by 
the overall fuel economy of 
ed policy over the 10 real-
ble 3. The rule-based policy 
proposed policy achieves an 
oposed policy improves the 

 
of a PHEV from the 

sed policies.
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fuel economy by 39% compared to the rule-based policy in the 
ordinary HEV. 

We plot the ICE operation points over a driving cycle on the ICE 
fuel efficiency map in Figure 5. The “x” points are from rule-
based policy and the “o” points are from our proposed policy. We 
can observe that the operation points from the proposed policy are 
more concentrated on the high efficiency region of the ICE, 
validating the effectiveness of the proposed policy. 

We also test the fuel consumption of a PHEV in the battery SOC-
depletion mode using the proposed power management policy and 
the rule-based policy. Again, the proposed policy always results in 
lower fuel consumption. The proposed policy can reduce the fuel 
consumption by 60.8% in maximum and 30.4% on average. The 
MPG value of the rule-based policy over the 10 driving cycles is 
55 and the MPG value of the proposed policy over the 10 driving 
cycles is 78. Therefore, the proposed policy improves the fuel 
economy by 42% compared to the rule-based policy in the PHEV. 
In addition, comparing Table 4 with Table 3, we can observe that 
the PHEV usually has higher fuel economy than the ordinary 
HEV. We also plot the ICE operation points over a driving cycle 
on the ICE fuel efficiency map in Figure 6. We can observe that 
the operation points from the proposed policy are more 
concentrated on the high efficiency region of the ICE, again 
validating the effectiveness of the proposed policy. 

Table 4. Fuel consumption of a PHEV using proposed and 
rule-based policies. 

Driving Cycle Proposed Policy Rule-based Policy Reduction
IM240 42.4 g 52.8 g 19.7 %
LA92 408.1 g 544.6 g 25.1 %
NEDC 214.1 g 270.2 g 20.8 %
NYCC 24.4 g 62.3 g 60.8 %
HWFET 193.1 g 323.0 g 40.2 %
MODEM_1 110.6 g 192.7 g 42.6 %
MODEM_2 191.0 g 318.0 g 39.9 %
MODEM_3 50.0 g 108.0 g 53.7 %
Artemis_urban 100.3 g 200.8 g 50.0 %
Artemis_rural 422.1 g 451.8 g 6.6 %
total 1756.1 g 2524.2 g 30.4 %

6. CONCLUSION 
The HEV features a hybrid propulsion system consisting of one 
ICE and one or more EMs. The use of both ICE and EM improves 
the performance and fuel economy of HEVs but also increases the 
complexity of HEV power management. Our proposed approach 
minimizes the HEV fuel consumption over any driving cycles. 
Different from previous works, our strategy derives the optimal 
HEV power management policy using reinforcement learning, 
which requires neither complete nor stochastic information of the 
driving cycles in prior, and only partial information of detailed 
HEV modeling. Simulation results over real-world and testing 
driving cycles demonstrate the effectiveness of the proposed HEV 
power management policy. 
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