
SC-DCNN: Highly-Scalable Deep Convolutional
Neural Network using Stochastic Computing

Ao Ren† Ji Li� Zhe Li† Caiwen Ding†

Xuehai Qian� Qinru Qiu† Bo Yuan∓ Yanzhi Wang†
† Department of Electrical Engineering and Computer Science, Syracuse University

�Department of Electrical Engineering, University of Southern California
∓Department of Electrical Engineering, City University of New York, City College

† {aren, zli89, cading, qiqiu, ywang393}@syr.edu,
� {jli724, xuehai.qian}@usc.edu, ∓ byuan@ccny.cuny.edu

Abstract
With the recent advance of wearable devices and Internet of
Things (IoTs), it becomes attractive to implement the Deep
Convolutional Neural Networks (DCNNs) in embedded and
portable systems. Currently, executing the software-based
DCNNs requires high-performance servers, restricting the
widespread deployment on embedded and mobile IoT de-
vices. To overcome this obstacle, considerable research ef-
forts have been made to develop highly-parallel and special-
ized DCNN accelerators using GPGPUs, FPGAs or ASICs.

Stochastic Computing (SC), which uses a bit-stream to
represent a number within [-1, 1] by counting the number
of ones in the bit-stream, has high potential for implement-
ing DCNNs with high scalability and ultra-low hardware
footprint. Since multiplications and additions can be calcu-
lated using AND gates and multiplexers in SC, significant
reductions in power (energy) and hardware footprint can be
achieved compared to the conventional binary arithmetic im-
plementations. The tremendous savings in power (energy)
and hardware resources allow immense design space for en-
hancing scalability and robustness for hardware DCNNs.

This paper presents SC-DCNN, the first comprehensive
design and optimization framework of SC-based DCNNs,
using a bottom-up approach. We first present the designs of
function blocks that perform the basic operations in DCNN,
including inner product, pooling, and activation function.
Then we propose four designs of feature extraction blocks,
which are in charge of extracting features from input fea-
ture maps, by connecting different basic function blocks

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

ASPLOS ’17, April 08-12, 2017, Xi’an, China

c© 2017 ACM. ISBN 978-1-4503-4465-4/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3037697.3037746

with joint optimization. Moreover, the efficient weight stor-
age methods are proposed to reduce the area and power
(energy) consumption. Putting all together, with feature ex-
traction blocks carefully selected, SC-DCNN is holistically
optimized to minimize area and power (energy) consump-
tion while maintaining high network accuracy. Experimen-
tal results demonstrate that the LeNet5 implemented in SC-
DCNN consumes only 17 mm2 area and 1.53 W power,
achieves throughput of 781250 images/s, area efficiency of
45946 images/s/mm2, and energy efficiency of 510734 im-
ages/J.

1. Introduction
Deep learning (or deep structured learning) has emerged as
a new area of machine learning research, which enables a
system to automatically learn complex information and ex-
tract representations at multiple levels of abstraction (10).
Deep Convolutional Neural Network (DCNN) is recognized
as one of the most promising types of artificial neural net-
works taking advantage of deep learning and has become the
dominant approach for almost all recognition and detection
tasks (27). Specifically, DCNN has achieved significant suc-
cess in a wide range of machine learning applications, such
as image classification (37), natural language processing (8),
speech recognition (35), and video classification (19).

Currently, the high-performance servers are usually re-
quired for executing software-based DCNNs since software-
based DCNN implementations involve a large amount of
computations to achieve outstanding performance. However,
the high-performance servers incur high power (energy) con-
sumption and large hardware cost, making them unsuitable
for applications in embedded and mobile IoT devices that
require low-power consumption. These applications play an
increasingly important role in our everyday life and ex-
hibit a notable trend of being “smart”. To enable DCNNs
in these application with low-power and low-hardware cost,
the highly-parallel and specialized hardware has been de-

1

ar
X

iv
:1

61
1.

05
93

9v
2 

 [
cs

.C
V

] 
 3

1 
Ja

n 
20

17



signed using General-Purpose Graphics Processing Units
(GPGPUs), Field-Programmable Gate Array (FPGAs), and
Application-Specific Integrated Circuit (ASICs) (25; 38; 46;
31; 5; 41; 4; 40; 15; 44; 7; 14). Despite the performance and
power (energy) efficiency achieved, a large margin of im-
provement still exists due to the inherent inefficiency in im-
plementing DCNNs using conventional computing methods
or using general-purpose computing devices (16; 21).

We consider Stochastic Computing (SC) as a novel com-
puting paradigm to provide significantly low hardware foot-
print with high energy efficiency and scalability. In SC, a
probability number is represented using a bit-stream (13),
therefore, the key arithmetic operations such as multiplica-
tions and additions can be implemented as simple as AND
gates and multiplexers (MUX), respectively (6). Due to these
features, SC has the potential to implement DCNNs with sig-
nificantly reduced hardware resources and high power (en-
ergy) efficiency. Considering the large number of multiplica-
tions and additions in DCNN, achieving the efficient DCNN
implementation using SC requires the exploration of a large
design space.

In this paper, we propose SC-DCNN, the first comprehen-
sive design and optimization framework of SC-based DC-
NNs, using a bottom-up approach.

The proposed SC-DCNN fully utilizes the advantages of
SC and achieves remarkably low hardware footprint, low
power and energy consumption, while maintaining high net-
work accuracy. Based on the proposed SC-DCNN architec-
ture, this paper made the following key contributions:

• Applying SC to DCNNs. We are the first (to the best of
our knowledge) to apply SC to DCNNs. This approach
is motivated by 1) the potential of SC as a computing
paradigm to provide low hardware footprint with high en-
ergy efficiency and scalability; and 2) the need to imple-
ment DCNNs in the embedded and mobile IoT devices.

• Basic function blocks and hardware-oriented max
pooling. We propose the design of function blocks
that perform the basic operations in DCNN, including
Specifically, we present a novel hardware-oriented max
pooling design for efficiently implementing (approxi-
mate) max pooling in SC domain. The pros and cons of
different types of function blocks are also thoroughly
investigated.

• Joint optimizations for feature extraction blocks. We
propose four optimized designs of feature extraction
blocks which are in charge of extracting features from
input feature maps. The function blocks inside the
feature extraction block are jointly optimized through
both analysis and experiments with respect to input
bit-stream length, function block structure, and function
block compatibilities.

• Weight storage schemes. The area and power (energy)
consumption of weight storage are reduced by com-

prehensive techniques, including efficient filter-aware
SRAM sharing, effective weight storage methods, and
layer-wise weight storage optimizations.

• Overall SC-DCNN optimization. We conduct holistic
optimizations of the overall SC-DCNN architecture with
carefully selected feature extraction blocks and layer-
wise feature extraction block configurations, to minimize
area and power (energy) consumption while maintaining
the high network accuracy. The optimization procedure
leverages the crucial observation that hardware inaccura-
cies in different layers in DCNN have different effects on
the overall accuracy. Therefore, different designs may be
exploited to minimize area and power (energy) consump-
tions.

• Remarkably low hardware footprint and low power
(energy) consumption. Overall, the proposed SC-
DCNN achieves the lowest hardware cost and energy
consumption in implementing LeNet5 compared with
reference works.

2. Related Works
Authors in (25; 38; 23; 17) leverage the parallel computing
and storage resources in GPUs for efficient DCNN imple-
mentations. FPGA-based acceleration (46; 31) is another
promising path towards the hardware implementation of
DCNNs due to the programmable logic, high degree of
parallelism and short develop round. However, the GPU and
FPGA-based implementations still exhibit a large margin
of performance enhancement and power reduction. It is be-
cause 1) GPUs and FPGAs are general-purpose computing
devices not specifically optimized for executing DCNNs,
and ii) the relatively limited signal routing resources in
such general platforms restricts the performance of DCNNs
which typically exhibit high inter-neuron communication
requirements.

ASIC-based implementations of DCNNs have been
recently exploited to overcome the limitations of general-
purpose computing devices. Two representative recent
works are DaDianNao (7) and EIE (14). The former
proposes an ASIC “node” which could be connected in
parallel to implement a large-scale DCNN, whereas the
latter focuses specifically on the fully-connected layers of
DCNN and achieves high throughput and energy efficiency.

To significantly reduce hardware cost and improve energy
efficiency and scalability, novel computing paradigms need
to be investigated. We consider SC-based implementation of
neural network an attractive candidate to meet the stringent
requirements and facilitate the widespread of DCNNs in em-
bedded and mobile IoT devices. Although not focusing on
deep learning, (36) proposes the design of a neurochip using
stochastic logic. (16) utilizes stochastic logic to implement
a radial basis function-based neural network. In addition,
a neuron design with SC for deep belief network was pre-
sented in (21). Despite the previous application of SC, there

2



is no existing work that investigates comprehensive designs
and optimizations of SC-based hardware DCNNs including
both computation blocks and weight storing methods.

3. Overview of DCNN Architecture and
Stochastic Computing

3.1 DCNN Architecture Overview
Deep convolutional neural networks are biologically
inspired variants of multilayer perceptrons (MLPs) by
mimicking the animal visual mechanism (2). An animal
visual cortex contains two types of cells and they are only
sensitive to a small region (receptive field) of the visual
field. Thus a neuron in a DCNN is only connected to a small
receptive field of its previous layer, rather than connected to
all neurons of previous layer like traditional fully connected
neural networks.

As shown in Figure 1, in the simplest case, a DCNN is a
stack of three types of layers: Convolutional Layer, Pooling
Layer, and Fully Connected Layer. The Convolutional layer
is the core building block of DCNN, its main operation is
the convolution that calculates the dot-product of receptive
fields and a set of learnable filters (or kernels) (1). Figure 2
illustrates the process of convolution operations. After the
convolution operations, the nonlinear down-samplings are
conducted in the pooling layers to reduce the dimension of
data. The most common pooling strategies are max pooling
and average pooling. Max pooling picks up the maximum
value from the candidates, and average pooling calculates
the average value of the candidates. Then, the extracted
feature maps after down-sampling operations are sent to
activation functions that conduct non-linear transformations
such as Rectified Linear Unit (ReLU) f(x) = max(0, x),
Sigmoid function f(x) = (1 + e−x)−1 and hyperbolic
tangent (tanh) function f(x) = 2

1+e−2x − 1. Next, the high-
level reasoning is completed via the fully connected layer.
Neurons in this layer are connected to all activation results in
the previous layer. Finally, the loss layer is normally the last
layer of DCNN and it specifies how the deviation between
the predicted and true labels is penalized in the network
training process. Various loss functions such as softmax loss,
sigmoid cross-entropy loss may be used for different tasks.

The concept of “neuron” is widely used in the soft-
ware/algorithm domain. In the context of DCNNs, a neuron
consists of one or multiple basic operations. In this paper,
we focus on the basic operations in hardware designs
and optimizations, including: inner product, pooling, and

...

Input 
layer

Convolutional
         layer

Pooling 
  layer

Fully Connected 
          layer

Output
  layer

......... ......
............

Figure 1. The general DCNN architecture.

Feature Map
1

-1
-10
0
-10

0
1

1
2

00
0
00

2
0

0
1

00
0
01

0
0

0
2

00
2
10

1
1

0
2

20
1
00

0
0

0210220

0
0
0

2
1
0

Input Volume
Filter

-1

-1

Figure 2. Illustration of the convolution process.

w1

w2
w3

w4

wn

x1

x2

x3

x4

xn

...

Σ ϕ

5
  Inner Product 
Function Block

Activation
  Function 
    Block

Pooling Function Block
8

1 6
3
4

7
2

6
9

5
4

7
6

8
7

8
7

9
8

5
4

6
7

Average Pooling Max Pooling

  (a)   (b)   (c)

Figure 3. Three types of basic operations (function blocks)
in DCNN. (a) Inner Product, (b) pooling, and (c) activation.

activation. The corresponding SC-based designs of these
fundamental operations are termed function blocks. Figure
3 illustrates the behaviors of function blocks, where xi’s in
Figure 3(a) represent the elements in a receptive filed, and
wi’s represent the elements in a filter. Figure 3(b) shows the
average pooling and max pooling function blocks. Figure
3(c) shows the activation function block (e.g. hyperbolic
tangent function). The composition of an inner product
block, a pooling block, and an activation function block is
referred to as the feature extraction block, which extracts
features from feature maps.

3.2 Stochastic Computing (SC)
Stochastic Computing (SC) is a paradigm that represents a
probabilistic number by counting the number of ones in a
bit-stream. For instance, the bit-stream 0100110100 contains
four ones in a ten-bit stream, thus it represents P (X =
1) = 4/10 = 0.4. In addition to this unipolar encoding
format, SC can also represent numbers in the range of [-1,
1] using the bipolar encoding format. In this scenario, a real
number x is processed by P (X = 1) = (x + 1)/2, thus
0.4 can be represented by 1011011101, as P (X = 1) =
(0.4 + 1)/2 = 7/10. To represent a number beyond the
range [0, 1] using unipolar format or beyond [-1, 1] using
bipolar format, a pre-scaling operation (45) can be used.
Furthermore, since the bit-streams are randomly generated
with stochastic number generators (SNGs), the randomness
and length of the bit-streams can significantly affect the
calculation accuracy (34). Therefore, the efficient utilization
of SNGs and the trade-off between the bit-stream length
(i.e. the accuracy) and the resource consumption need to be
carefully taken into consideration.

Compared to the conventional binary computing, the ma-
jor advantage of stochastic computing is the significantly
lower hardware cost for a large category of arithmetic cal-

3

http://arxiv.org/abs/bit-stream/0100110


culations. The abundant area budget offers immense design
space in optimizing hardware performance via exploring the
tradeoffs between the area and other metrics, such as power,
latency, and parallelism degree. Therefore, SC is an inter-
esting and promising approach to implementing large-scale
DCNNs.

Multiplication. Figure 4 shows the basic multiplication
components in SC domain. A unipolar multiplication can be
performed by an AND gate since P (A · B = 1) = P (A =
1)P (B = 1) (assuming independence of two random vari-
ables), and a bipolar multiplication is performed by means
of a XNOR gate since c = 2P (C = 1) − 1 = 2(P (A =
1)P (B = 1) + P (A = 0)P (B = 0)) − 1 = (2P (A =
1)− 1)(2P (B = 1)− 1) = ab.

Addition. We consider four popular stochastic addition
methods for SC-DCNNs. 1) OR gate (Figure 5 (a)). It is the
simplest method that consumes the least hardware footprint
to perform an addition, but this method introduces consid-
erable accuracy loss because the computation “logic 1 OR
logic 1” only generates a single logic 1. 2) Multiplexer (Fig-
ure 5 (b)). It uses a multiplexer, which is the most popular
way to perform additions in either the unipolar or the bipo-
lar format (6). For example, a bipolar addition is performed
as c = 2P (C = 1) − 1 = 2(1/2P (A = 1) + 1/2P (B =
1)) − 1 = 1/2(2P (A = 1) − 1) + (2P (B = 1) − 1)) =
1/2(a+b). 3) Approximate parallel counter (APC) (20) (Fig-
ure 5 (c)). It counts the number of 1s in the inputs and repre-
sents the result with a binary number. This method consumes
fewer logic gates compared with the conventional accumu-
lative parallel counter (20; 33). 4) Two-line representation
of a stochastic number (43) (Figure 5 (d)). This representa-
tion consists of a magnitude streamM(X) and a sign stream
S(X), in which 1 represents a negative bit and 0 represents
a positive bit. The value of the represented stochastic num-
ber is calculated by: x = 1

L

∑L−1
i=0 (1 − 2S(Xi))M(Xi),

where L is the length of the bit-stream. As an example, -0.5
can be represented by M(−0.5) : 10110001 and S(−0.5) :
11111111. Figure 5 (d) illustrates the structure of the two-
line representation-based adder. The summation of Ai (con-
sisting of S(Ai) andM(Ai)) andBi are sent to a truth table,
then the truth table and the counter together determine the
carry bit and Ci. The truth table can be found in (43).

Hyperbolic Tangent (tanh). The tanh function is highly
suitable for SC-based implementations because i) it can
be easily implemented with a K-state finite state machine
(FSM) in the SC domain (6; 28) and costs less hardware
when compared to the piecewise linear approximation
(PLAN)-based implementation (24) in conventional com-
puting domain; and ii) replacing ReLU or sigmoid function
by tanh function does not cause accuracy loss in DCNN
(23). Therefore, we choose tanh as the activation function
in SC-DCNNs in our design. The diagram of the FSM
is shown in Figure 6. It reads the input bit-stream bit by
bit, when the current input bit is one, it moves to the next
state, otherwise it moves to the previous state. It outputs a

Z
A
B

A
B

1,1,1,1,0,0,0,0 (4/8)
(a) 1,1,0,1,1,1,1,0 (6/8) 1,1,0,1,0,0,0,0 (3/8)

(b)
1,1,0,1,0,0,1,0 (0/8)
1,0,1,1,1,1,1,0 (4/8)

1,0,0,1,0,0,1,1 (0/8)Z

Figure 4. Stochastic multiplication. (a) Unipolar multipli-
cation and (b) bipolar multiplication.

(c)

Parallel
Counter 

A1

...
 n to 1
  Mux

    Comb.
 Logic for
Truth Tab

 Counter
In

Enable U/D

1

1

1

23

2

2

S(A  )i
M(A  )i

S(B  )i
M(B  )i

S(C  )i

M(C  )i

A2

A3

An

X

(b)(a)

(d)

A1

A2

A3

An

X X

A1
A2
A3

An

......

Figure 5. Stochastic addition. (a) OR gate, (b) MUX, (c)
APC, and (d) two-line representation-based adder.

_
X

S0 S1 SK/2-1 SK/2 SK-2 SK-1

X
_

X X X X

X
_

X
_

X
_

X
_

Z=0 Z=1

tanh(   x) Z

XX

2
K_X

Figure 6. Stochastic hyperbolic tangent.

0 when the current state is on the left half of the diagram,
otherwise it outputs a 1. The value calculated by the FSM
satisfies Stanh(K,x) ∼= tanh(K2 x), where Stanh denotes
stochastic tanh.

3.3 Application-level vs. Hardware Accuracy
The overall network accuracy (e.g., the overall recognition
or classification rates) is one of the key optimization goals of
the SC-based hardware DCNN. Due to the inherent stochas-
tic nature, the SC-based function blocks and feature extrac-
tion blocks exhibit certain degree of hardware inaccuracy.
The network accuracy and hardware accuracy are different
but correlated, — the high accuracy in each function block
will likely lead to a high overall network accuracy. There-
fore, the hardware accuracy can be optimized in the design
of SC-based function blocks and feature extraction blocks.

4



4. Design and Optimization for Function
Blocks and Feature Extraction Blocks in
SC-DCNN

In this section, we first perform comprehensive designs and
optimizations in order to derive the most efficient SC-based
implementations for function blocks, including inner prod-
uct/convolution, pooling, and activation function. The goal
is to reduce power, energy and hardware resource while still
maintaining high accuracy. Based on the detailed analysis of
pros and cons of each basic function block design, we pro-
pose the optimized designs of feature extraction blocks for
SC-DCNNs through both analysis and experiments.

4.1 Inner Product/Convolution Block Design
As shown in Figure 3 (a), an inner product/convolution block
in DCNNs is composed of multiplication and addition oper-
ations. In SC-DCNNs, inputs are distributed in the range of
[-1, 1], we adopt the bipolar multiplication implementation
(i.e. XNOR gate) for the inner product block design. The
summation of all products is performed by the adder(s). As
discussed in Section 3.2, the addition operation has differ-
ent implementations. To find the best option for DCNN, we
replace the summation unit in Figure 3 (a) with the four dif-
ferent adder implementations shown in Figure 5.

OR Gate-Based Inner Product Block Design. Perform-
ing addition using OR gate is straightforward. For exam-
ple, 3

8 + 4
8 can be performed by ”00100101 OR 11001010”,

which generates ”11101111” ( 78 ). However, if first input bit-
stream is changed to ”10011000”, the output of OR gate be-
comes ”11011010” ( 58 ). Such inaccuracy is introduced by
the multiple representations of the same value in SC domain
and the fact that the simple ”logic 1 OR logic 1” cannot tol-
erate such variance. To reduce the accuracy loss, the input
streams should be pre-scaled to ensure that there are only
very few 1’s in the bit-streams. For the unipolar format bit-
streams, the scaling can be easily done by dividing the origi-
nal number by a scaling factor. Nevertheless, in the scenario
of bipolar encoding format, there are about 50% 1’s in the
bit-stream when the original value is close to 0. It renders
the scaling ineffective in reducing the number of 1’s in the
bit-stream.

Table 1 shows the average inaccuracy (absolute error) of
OR gate-based inner product block with different input sizes,
in which the bit-stream length is fixed at 1024 and all average
inaccuracy values are obtained with the most suitable pre-
scaling. The experimental results suggest that the accuracy
of unipolar calculations may be acceptable, but the accuracy
is too low for bipolar calculations and becomes even worse
with the increased input size. Since it is almost impossible
to have only positive input values and weights, we conclude
that the OR gate-based inner product block is not appropriate
for SC-DCNNs.

MUX-Based Inner Product Block Design. According
to (6), an n-to-1 MUX can sum all inputs together and

Table 1. Absolute Errors of OR Gate-Based Inner Product
Block

Input Size 16 32 64
Unipolar inputs 0.47 0.66 1.29
Bipolar inputs 1.54 1.70 2.3

Table 2. Absolute Errors of MUX-Based Inner Product
Block

Input size
Bit stream length

512 1024 2048 4096
16 0.54 0.39 0.28 0.21
32 1.18 0.77 0.56 0.38
64 2.35 1.58 1.19 0.79

generate an output with a scaling down factor 1
n . Since

only one bit is selected among all inputs to that MUX at
one time, the probability of each input to be selected is 1

n .
The selection signal is controlled by a randomly generated
natural number between 1 and n. Taking Figure 3 (a) as
an example, the output of the summation unit (MUX) is
1
n (x0w0 + ...+ xn−1wn−1).

Table 2 shows the average inaccuracy (absolute error) of
the MUX-based inner product block measured with differ-
ent input sizes and bit-stream lengths. The accuracy loss of
MUX-based block is mainly caused by the fact that only one
input is selected at one time, and all the other inputs are not
used. The increasing input size causes accuracy reduction
because more bits are dropped. However, we see that suffi-
ciently good accuracy can still be obtained by increasing the
bit-stream length.

APC-Based Inner Product Block. The structure of a 16-
bit APC is shown in Figure 7. A0 − A7 and B0 − B7 are
the outputs of XNOR gates, i.e., the products of inputs xi’s
and weights wi’s. Suppose the number of inputs is n and
the length of a bit-stream is m, then the products of xi’s
and wi’s can be represented by a bit-matrix of size n ×m.
The function of the APC is to count the number of ones in
each column and represent the result in the binary format.
Therefore, the number of outputs is log2 n. Taking the 16-bit
APC as an example, the output should be 4-bit to represent
a number between 0 - 16. However, it is worth noting that
the weight of the least significant bit is 21 rather than 20 to
represent 16. Therefore, the output of the APC is a bit-matrix
with size of log2 n×m.

From Table 3, we see that the APC-based inner prod-
uct block only results in less than 1% accuracy degradation
when compared with the conventional accumulative paral-
lel counter, but it can achieve about 40% reduction of gate
count (20). This observation demonstrates the significant ad-
vantage of implementing efficient inner product block using
APC-based method, in terms of power, energy, and hardware
resource.

Two-Line Representation-Based Inner Product Block.
The two-line representation-based SC scheme (43) can be
used to construct a non-scaled adder. Figure 5 (d) illustrates

5



3
2

2
2

1
2

1
2

A0

B0

A1

B1

A2

B2

A3

B3

A4

B4

A5
B5

A6

A7
B7

FA

FA

FA

FA
B6

0100...1011

1001...1101

1110...0100

0100...1011

0100...1011
1110...0100
0100...1011
1110...0100
0100...1011
1110...0100
0100...1011
1110...0100
0100...1011
1110...0100
0100...1011
1110...0100

Figure 7. 16-bit Approximate Parallel Counter.

Table 3. Relative Errors of the APC-Based Compared
with the Conventional Parallel Counter-Based Inner Product
Blocks

Input size
Bit stream length

128 256 384 512
16 1.01% 0.87% 0.88% 0.84%
32 0.70% 0.61% 0.58% 0.57%
64 0.49% 0.44% 0.44% 0.42%

the structure of a two-line representation-based adder. Since
Ai, Bi, and Ci are bounded as the element of {−1, 0, 1}, a
carry bit may be missed. Therefore, a three-state counter is
used here to store the positive or negative carry bit.

However, there are two limitations for the two-line
representation-based inner product block in hardware
DCNNs: i) An inner product block generally has more than
two inputs, the overflow may often occur in the two-line
representation-based inner product calculation due to its
non-scaling characteristics. This leads to significant accu-
racy loss; and ii) the area overhead is too high compared
with other inner product implementation methods.

4.2 Pooling Block Designs
Pooling (or down-sampling) operations are performed by
pooling function blocks in DCNNs to significantly reduce
i) inter-layer connections; and ii) the number of parameters
and computations in the network, meanwhile maintaining
the translation invariance of the extracted features (1). Av-
erage pooling and max pooling are two widely used pool-
ing strategies. Average pooling is straightforward to im-
plement in SC domain, while max pooling, which exhibits
higher performance in general, requires more hardware re-
sources. In order to overcome this challenge, we propose a
novel hardware-oriented max pooling design with high per-
formance and amenable to SC-based implementation.

Average Pooling Block Design. Figure 3 (b) shows how
the feature map is average pooled with 2×2 filters. Since av-
erage pooling calculates the mean value of entries in a small
matrix, the inherent down-scaling property of the MUX can
be utilized. Therefore, the average pooling can be performed
by the structure shown in Figure 5 (b) with low hardware
cost.

Hardware-Oriented Max Pooling Block Design. The
max pooling operation has been recently shown to provide
higher performance in practice compared with the average
pooling operation (1). However, in SC domain, we can find
out the bit-stream with the maximum value among four can-
didates only after counting the total number of 1’s through
the whole bit-streams, which inevitably incurs long latency
and considerable energy consumption.

To mitigate the cost, we propose a novel SC-based
hardware-oriented max pooling scheme. The insight is
that once a set of bit-streams are sliced into segments, the
globally largest bit-stream (among the four candidates)
has the highest probability to be the locally largest one in
each set of bit-stream segments. This is because all 1’s are
randomly distributed in the stochastic bit-streams.

Consider the input bit-streams of the hardware-oriented
max pooling block as a bit matrix. Suppose there are four bit-
streams, and each hasm bits, thus the size of the bit matrix is
4×m. Then the bit matrix is evenly sliced into small matrices
whose size are c ×m (i.e., each bit-stream is evenly sliced
into segments whose length are c). Since the bit-streams
are randomly generated, ideally, the largest row (segment)
among the four rows in each small matrix is also the largest
row of the global matrix. To determine the largest row in
a small matrix, the number of 1s are counted in all rows
in a small matrix in parallel. The maximum counted result
determines the next c-bit row that is sent to the output of the
pooling block. In another word, the currently selected c-bit
segment is determined by the counted results of the previous
matrix. To reduce latency, the c-bit segment from the first
small matrix is randomly chosen. This strategy incurs zero
extra latency but only causes a negligible accuracy loss when
c is properly selected.

Figure 8 illustrates the structure of the hardware-oriented
max pooling block, where the output from max output ap-
proximately is equal to the largest bit-stream. The four input
bit-streams sent to the multiplexer are also connected to four
counters, and the outputs of the counters are connected to a
comparator to determine the largest segment. The output of
the comparator is used to control the selection of the four-
to-one MUX. Suppose in the previous small bit matrix, the
second row is the largest, then MUX will output the second
row of the current small matrix as the current c-bit output.

Table 4 shows the result deviations of the hardware-
oriented max pooling design compared with the software-
based max pooling implementation. The length of a
bit-stream segment is 16. In general, the proposed pooling
block can provide a sufficiently accurate result even with
large input size.

4.3 Activation Function Block Designs
Stanh. (6) proposed a K-state FSM-based design (i.e.,
Stanh) in the SC domain for implementing the tanh function
and describes the relationship between Stanh and tanh as
Stanh(K,x) ∼= tanh(K2 x). When the input stream x is

6



A1

 4 to 1
  Mux

A2

A3

A4

Out

Comp-
arator

C
ounter

C
ounter

C
ounter

C
ounter

 Sel

0100...1011
1110...0100
0100...1011
1110...0100

Controller

0100 1011
1110 0100
0100 1011
1110 0100
c-bit c-bit c-bit c-bit

Figure 8. The Proposed Hardware-Oriented Max Pooling.

Table 4. Relative Result Deviation of Hardware-Oriented
Max Pooling Block Compared with Software-Based Max
Pooling

Input size Bit-stream length
128 256 384 512

4 0.127 0.081 0.066 0.059
9 0.147 0.099 0.086 0.074
16 0.166 0.108 0.097 0.086

Table 5. The Relationship Between State Number and Rel-
ative Inaccuracy of Stanh

State Number 8 10 12 14 16 18 20
Relative Inaccuracy (%) 10.06 8.27 7.43 7.36 7.51 8.07 8.55

distributed in the range [-1, 1] (i.e. K
2 x is distributed in

the range [−K
2 ,

K
2 ]), this equation works well, and higher

accuracy can be achieved with the increased state number
K.

However, Stanh cannot be applied directly in SC-DCNN
for three reasons. First, as shown in Figure 9 and Table 5
(with bit-stream length fixed at 8192), when the input vari-
able of Stanh (i.e. K

2 x) is distributed in the range [-1, 1],
the inaccuracy is quite notable and is not suppressed with
the increasing of K. Second, the equation works well when
x is precisely represented. However, when the bit-stream is
not impractically long (less than 216 according to our experi-
ments), the equation should be adjusted with a consideration
of bit-stream length. Third, in practice, we usually need to
proactively down-scale the inputs since a bipolar stochastic
number cannot reach beyond the range [-1, 1]. Moreover,
the stochastic number may be sometimes passively down-
scaled by certain components, such as a MUX-based adder
or an average pooling block (30; 29). Therefore, a scaling-
back process is imperative to obtain an accurate result. Based
on the these reasons, the design of Stanh needs to be op-
timized together with other function blocks to achieve high
accuracy for different bit-stream lengths and meanwhile pro-
vide a scaling-back function. More details are discussed in
Section 4.4.

Btanh. Btanh is specifically designed for the APC-based
adder to perform a scaled hyperbolic tangent function. In-
stead of using FSM, a saturated up/down counter is used to

Figure 9. Output comparison of Stanh vs tanh.

Σ }Σ

Σ

Σ

Pooling Activation

X0

W0

X1

W1

X2

W2

X3

W3

Figure 10. The structure of a feature extraction block.

convert the binary outputs of the APC-based adder back to
a bit-stream. The implementation details and how to deter-
mine the number of states can be found in (21).

4.4 Design & Optimization for Feature Extraction
Blocks

In this section, we propose an optimized feature extraction
blocks. Based on the previous analysis and results, we select
several candidates for constructing feature extraction blocks
shown in Figure 10, including: the MUX-based and APC-
based inner product/convolution blocks, average pooling and
hardware-oriented max pooling blocks, and Stanh and Btanh
blocks.

In SC domain, the parameters such as input size, bit-
stream length, and the inaccuracy introduced by the previ-
ous connected block can collectively affect the overall per-
formance of the feature extraction block. Therefore, the iso-
lated optimizations on each individual basic function block
are insufficient to achieve the satisfactory performance for
the entire feature extraction block. For example, the most
important advantage of the APC-based inner product block
is its high accuracy and thus the bit-stream length can be re-
duced. On the other side, the most important advantage of
MUX-based inner product block is the low hardware cost
and the accuracy can be improved by increasing the bit-
stream length. Accordingly, to achieve good performance,
we cannot simply compose these basic function blocks, in-
stead, a series of joint optimizations are performed on each
type of feature extraction block. Specifically, we attempt to
fully making use of the advantages of each of the building
blocks.

In the following discussion, we use MUX/APC to denote
the MUX-based or APC-based inner product/convolution

7



_
X

S0 S1 SK/5-1 SK/5 SK-2 SK-1

X
_

X X X X

X
_

X
_

X
_

X
_

Z=0 Z=1

XX

Figure 11. Structure of optimized Stanh for MUX-Max-
Stanh.

blocks; use Avg/Max to denote the average or hardware-
oriented max pooling blocks; use Stanh/Btanh to denote the
corresponding activation function blocks. A feature extrac-
tion block configuration is represented by choosing vari-
ous combinations from the three components. For example,
MUX-Avg-Stanh means that four MUX-based inner prod-
uct blocks, one average pooling block, and one Stanh acti-
vation function block are cascade-connected to construct an
instance of feature extraction block.

MUX-Avg-Stanh. As discussed in Section 4.3, when
Stanh is used, the number of states needs to be carefully
selected with a comprehensive consideration of the scaling
factor, bit-stream length, and accuracy requirement. Below
is the empirical equation that is extracted from our compre-
hensive experiments to obtain the approximately optimal
state number K to achieve a high accuracy:

K = f(L,N) ≈ 2× log2N +
log2 L×N

α× log2N
, (1)

where the nearest even number to the result calculated by the
above equation is assigned toK,N is the input size, L is the
bit-stream length, and empirical parameter α = 33.27.

MUX-Max-Stanh. The hardware-oriented max pooling
block shown in Figure 8 in most cases generates an output
that is slightly less than the maximum value. In this design
of feature extraction block, the inner products are all scaled
down by a factor of n (n is the input size), and the subse-
quent scaling back function of Stanh will enlarge the inac-
curacy, especially when the positive/negative sign of the se-
lected maximum inner product value is changed. For exam-
ple, 505/1000 is a positive number, and 1% under-counting
will lead the output of the hardware-oriented max pooling
unit to be 495/1000, which is a negative number. Thereafter,
the obtained output of Stanh may be -0.5, but the expected
result should be 0.5. Therefore, the bit-stream has to be long
enough to diminish the impact of under-counting, and the
Stanh needs to be re-designed to fit the correct (expected) re-
sults. As shown in Figure 11, the re-designed FSM for Stanh
will output 0 when the current state is at the left 1/5 of the
diagram, otherwise it outputs a 1. The optimal state number
K is calculated through the following empirical equation de-
rived from experiments:

K = f(L,N) ≈ 2×(log2N+log2 L)−
α

log2N
− β

log5 L
, (2)

where the nearest even number to the result calculated by
the above equation is assigned to K, N is the input size, L
is the bit-stream length, α = 37, and empirical parameter
β = 16.5.

APC-Avg-Btanh. When the APC is used to construct
the inner product block, conventional arithmetic calculation

components, such as full adders and dividers, can be utilized
to perform the averaging calculation, because the output of
APC-based inner product block is a binary number. Since the
design of Btanh initially aims at directly connecting to the
output of APC, and an average pooling block is now inserted
between APC and Btanh, the original formula proposed in
(21) for calculating the optimal state number of Btanh needs
to be re-formulated as:

K = f(N) ≈ N

2
, (3)

from our experiments. In this equation N is the input size,
and the nearest even number to N

2 is assigned to K.
APC-Max-Btanh. Although the output of APC-based in-

ner product block is a binary number, the conventional bi-
nary comparator cannot be directly used to perform max
pooling. This is because the output sequence of APC-based
inner product block is still a stochastic bit-stream. If the
maximum binary number is selected at each time, the pool-
ing output is always greater than the actual maximum in-
ner product result. Instead, the proposed hardware-oriented
max pooling design should be used here, and the counters
should be replaced by accumulators for accumulating the bi-
nary numbers. Thanks to the high accuracy provided by ac-
cumulators in selecting the maximum inner product result,
the original Btanh design presented in (21) can be directly
used without adjustment.

5. Weight Storage Scheme and Optimization
As discussed in Section 4, the main computing task of an
inner product block is to calculate the inner products of
xi’s and wi’s. xi’s are input by users, and wi’s are weights
obtained by training using software and should be stored in
the hardware-based DCNNs. Static random access memory
(SRAM) is the most suitable circuit structure for weight
storage due to its high reliability, high speed, and small area.
The specifically optimized SRAM placement schemes and
weight storage methods are imperative for further reductions
of area and power (energy) consumption. In this section,
we present optimization techniques including efficient filter-
aware SRAM sharing, weight storage method, and layer-
wise weight storage optimizations.

5.1 Efficient Filter-Aware SRAM Sharing Scheme
Since all receptive fields of a feature map share one filter (a
matrix of weights), all weights functionally can be separated
into filter-based blocks, and each weight block is shared by
all inner product/convolution blocks using the corresponding
filter. Inspired by this fact, we propose an efficient filter-
aware SRAM sharing scheme, with structure illustrated in
Figure 12. The scheme divides the whole SRAM into small
blocks to mimic filters. Besides, all inner product blocks can
also be separated into feature map-based groups, where each
group extracts a specific feature map. In this scheme, a local
SRAM block is shared by all the inner product blocks of
the corresponding group. The weights of the corresponding

8



SRAM

SRAM
SRAM

...

X1

Pooling

X3

X0

X2

Activ-
ation

W W W W

Figure 12. Filter-Aware SRAM Sharing Scheme.

filter are stored in the local SRAM block of this group. This
scheme significantly reduces the routing overhead and wire
delay.

5.2 Weight Storage Method
Besides the reduction on routing overhead, the size of
SRAM blocks can also be reduced by trading off accuracy
for less hardware resources. The trade-off is realized by
eliminating certain least significant bits of a weight value
to reduce the SRAM size. In the following, we present a
weight storage method that significantly reduces the SRAM
size with little network accuracy loss.

Baseline: High Precision Weight Storage. In general,
DCNNs are trained with single floating point precision. In
hardware, the SRAM up to 64-bit is needed for storing one
weight value in the fixed-point format to maintain its original
high precision. This scheme provides high accuracy since
there is almost no information loss of weights. However, it
also incurs high hardware consumption in that the size of
SRAM and its related read/write circuits increase with the
precision increase of the stored weight values.

Low Precision Weight Storage Method. According to
our application-level experiments, many least significant bits
that are far from the decimal point only have a very lim-
ited impact on the overall accuracy. Therefore, the number
of bits for weight representation in the SRAM block can
be significantly reduced. We propose a mapping equation
that converts a weight in the real number format to the bi-
nary number stored in SRAM to eliminate the proper num-
bers of least significant bits. Suppose the weight value is x,
and the number of bits to store a weight value in SRAM
is w (which is defined as the precision of the represented
weight value), then the binary number to be stored for rep-
resenting x is: y =

Int( x+1
2 ×2w)

2w , where Int() means only
keeping the integer part. Figure 13 illustrates the network er-
ror rates when the reductions of weights’ precision are per-
formed at a single layer or all layers. The precision loss of
weights at Layer0 (consisting of a convolutional layer and
pooling layer) has the least impact, while the precision loss
of weights at Layer2 (a fully connected layer) has the most
significant impact. The reason is that Layer2 is the fully con-
nected layer that has the largest number of weights. On the
other hand, when w is set equal to or greater than seven,
the network error rates are low enough and almost do not

Figure 13. The impact of precision of weights at different
layers on the overall SC-DCNN network accuracy.

decrease with the further precision increase. Therefore, the
proposed weight storage method can significantly reduce the
size of SRAMs and their read/write circuits by reducing pre-
cision. The area savings estimated using CACTI 5.3 (42) is
10.3×.

5.3 Layer-wise Weight Storage Optimization
As shown in Figure 13, the precision of weights at different
layers have different impacts on the overall accuracy of the
network. (18) presented a method that set different weight
precisions at different layers to save weight storage. In SC-
DCNN, we adopt the same strategy to improve the hardware
performance. Specifically, this method is effective to obtain
savings in SRAM area and power (energy) consumption be-
cause Layer2 has the most number of weights compared with
the previous layers. For instance, when we set weights as
7-7-6 at the three layers of LeNet5, the network error rate
is 1.65%, which has only 0.12% accuracy degradation com-
pared with the error rate obtained using software-only imple-
mentation. However, 12× improvements on area and 11.9×
improvements on power consumption are achieved for the
weight representations (from CACTI 5.3 estimations), com-
pared with the baseline without any reduction in weight rep-
resentation bits.

6. Overall SC-DCNN Optimizations and
Results

In this section, we present optimizations of feature extrac-
tion blocks along with comparison results with respect to
accuracy, area/hardware footprint, power (energy) consump-
tion, etc. Based on the results, we perform thorough op-
timizations on the overall SC-DCNN to construct LeNet5
structure, which is one of the most well-known large-scale
deep DCNN structure. The goal is to minimize area and
power (energy) consumption while maintaining a high net-
work accuracy. We present comprehensive comparison re-
sults among i) SC-DCNN designs with different target net-
work accuracy, and ii) existing hardware platforms. The
hardware performance of the various SC-DCNN implemen-
tations regarding area, path delay, power and energy con-
sumption are obtained by: i) synthesizing with the 45nm

9



Figure 14. Input size versus absolute inaccuracy for (a) MUX-Avg-Stanh, (b) MUX-Max-Stanh, (c) APC-Avg-Btanh, and (d)
APC-Max-Btanh with different bit stream lengths.

Figure 15. Input size versus (a) area, (b) path delay, (c) total power, and (d) total energy for four different designs of feature
extraction blocks.

Nangate Open Cell Library (3) using Synopsys Design Com-
piler; and ii) estimating using CACTI 5.3 (42) for the SRAM
blocks. The key peripheral circuitries in the SC domain (e.g.
the random number generators) are developed using the de-
sign in (22) and synthesized using Synopsys Design Com-
piler.

6.1 Optimization Results on Feature Extraction Blocks
We present optimization results of feature extraction blocks
with different structures, input sizes, and bit-stream lengths
on accuracy, area/hardware footprint, power (energy)
consumption, etc. Figure 14 illustrates the accuracy results
of four types of feature extraction blocks: MUX-Avg-Stanh,
MUX-Max-Stanh, APC-Avg-Btanh, and APC-Max-Btanh.
The horizontal axis represents the input size that increases
logarithmically from 16 (24) to 256 (28). The vertical axis
represents the hardware inaccuracy of feature extraction
blocks. Three bit-stream lengths are tested and their impacts
are shown in the figure. Figure 15 illustrates the comparisons
among four feature extraction blocks with respect to area,
path delay, power, and energy consumption. The horizontal
axis represents the input size that increases logarithmically
from 16 (24) to 256 (28). The bit-stream length is fixed at
1024.

MUX-Avg-Stanh. From Figure 14 (a), we see that it has
the worst accuracy performance among the four structures.
It is because the MUX-based adder, as mentioned in Section
4, is a down-scaling adder and incurs inaccuracy due to in-
formation loss. Moreover, average pooling is performed with
MUXes, thus the inner products are further down-scaled and

more inaccuracy is incurred. As a result, this structure of
feature extraction block is only appropriate for dealing with
receptive fields with a small size. On the other hand, it is
the most area and energy efficient design with the smallest
path delay. Hence, it is appropriate for scenarios with tight
limitations on area and delay.

MUX-Max-Stanh. Figure 14 (b) shows that it has a bet-
ter accuracy compared with MUX-Avg-Stanh. The reason is
that the mean of four numbers is generally closer to zero
than the maximum value of the four numbers. As discussed
in Section 4, minor inaccuracy on the stochastic numbers
near zero can cause significant inaccuracy on the outputs of
feature extraction blocks. Thus the structures with hardware-
oriented pooling are more resilient than the structures with
average pooling. In addition, the accuracy can be signifi-
cantly improved by increasing the bit-stream length, thus
this structure can be applied for dealing with the receptive
fields with both small and large sizes. With respect to area,
path delay, and energy, its performance is a close second to
the MUX-Avg-Stanh. Despite its relatively high power con-
sumption, the power can be remarkably reduced by trading
off the path delay.

APC-Avg-Btanh. Figure 14 (c) and 14 (d) illustrate
the hardware inaccuracy of APC-based feature extraction
blocks. The results imply that they provide significantly
higher accuracy than the MUX-based feature extraction
blocks. It is because the APC-based inner product blocks
maintain most information of inner products and thus gen-
erate results with high accuracy. It is exactly the drawback
of the MUX-based inner product blocks. On the other

10



Figure 16. The impact of inaccuracies at each layer on the
overall SC-DCNN network accuracy.

hand, APC-based feature extraction blocks consume more
hardware resources and result in much longer path delays
and higher energy consumption. The long path delay is
partially the reason why the power consumption is lower
than MUX-based designs. Therefore, the APC-Avg-Btanh
is appropriate for DCNN implementations that have a
tight specification on the accuracy performance and have a
relative loose hardware resource constraint.

APC-Max-Btanh. Figure 14 (d) indicates that this fea-
ture extraction block design has the best accuracy due to sev-
eral reasons. First, it is an APC-based design. Second, the
average pooling in the APC-Avg-Btanh causes more infor-
mation loss than the proposed hardware-oriented max pool-
ing. To be more specific, the fractional part of the number
after average pooling is dropped: the mean of (2, 3, 4, 5)
is 3.5, but it will be represented as 3 in binary format, thus
some information is lost during the average pooling. Gen-
erally, the increase of input size will incur significant inac-
curacy except for APC-Max-Btanh. The reason that APC-
Max-Btanh performs better with more inputs is: more inputs
will make the four inner products sent to the pooling func-
tion block more distinct from one another, in another word,
more inputs result in higher accuracy in selecting the maxi-
mum value. The drawbacks of APC-Max-Btanh are also dif-
ferent. It has the highest area and energy consumption, and
its path delay is just second (but very close) to APC-Avg-
Btanh. Also, its power consumption is second (but close) to
the MUX-Max-Stanh. Accordingly, this design is appropri-
ate for the applications that have a very tight requirement on
the accuracy.

6.2 Layer-wise Feature Extraction Block
Configurations

Inspired by the experiment results of the layer-wise weight
storage scheme, we also investigate the sensitivities of differ-
ent layers to the inaccuracy. Figure 16 illustrates that differ-
ent layers have different error sensitivities. Combining this
observation with the observations drawn from Figure 14 and
Figure 15, we propose a layer-wise configuration strategy
that uses different types of feature extraction blocks in dif-
ferent layers to minimize area and power (energy) consump-
tion while maintaining a high network accuracy.

6.3 Overall Optimizations and Results on SC-DCNNs
Using the design strategies presented so far, we perform
holistic optimizations on the overall SC-DCNN to construct
the LeNet 5 DCNN structure. The (max pooling-based or
average pooling-based) LeNet 5 is a widely-used DCNN
structure (26) with a configuration of 784-11520-2880-
3200-800-500-10. The SC-DCNNs are evaluated with the
MNIST handwritten digit image dataset (9), which consists
of 60,000 training data and 10,000 testing data.

The baseline error rates of the max pooling-based and av-
erage pooling-based LeNet5 DCNNs using software imple-
mentations are 1.53% and 2.24%, respectively. In the op-
timization procedure, we set 1.5% as the threshold on the
error rate difference compared with the error rates of soft-
ware implementation. In another word, the network accuracy
degradation of the SC-DCNNs cannot exceed 1.5%. We set
the maximum bit-stream length as 1024 to avoid excessively
long delays. In the optimization procedure, for the configura-
tions that achieve the target network accuracy, the bit-stream
length is reduced by half in order to reduce energy consump-
tion. Configurations are removed if they fail to meet the net-
work accuracy goal. The process is iterated until no config-
uration is left.

Table 6 displays some selected typical configurations
and their comparison results (including the consumption of
SRAMs and random number generators). Configurations
No.1-6 are max pooling-based SC-DCNNs, and No.7-12
are average pooling-based SC-DCNNs. It can be observed
that the configurations involving more MUX-based feature
extraction blocks achieve lower hardware cost. Those in-
volving more APC-based feature extraction blocks achieve
higher accuracy. For the max pooling-based configura-
tions, No.1 is the most area efficient as well as power
efficient configuration, and No.5 is the most energy efficient
configuration. With regard to the average pooling-based
configurations, No.7, 9, 11 are the most area efficient and
power efficient configurations, and No.11 is the most energy
efficient configuration.

Table 7 shows the results of two configurations of our
proposed SC-DCNNs together with other software and hard-
ware platforms. It includes software implementations us-
ing Intel Xeon Dual-Core W5580 and Nvidia Tesla C2075
GPU and five hardware platforms: Minitaur (32), SpiNNaker
(39), TrueNorth (11; 12), DaDianNao (7), and EIE-64PE
(14). EIE’s performance was evaluated on a fully connected
layer of AlexNet (23). The state-of-the-art platform DaDi-
anNao proposed an ASIC “node” that could be connected
in parallel to implement a large-scale DCNN. Other hard-
ware platforms implement different types of hardware neu-
ral networks such as spiking neural network or deep-belief
network.

For SC-DCNN, the configuration No.6 and No.11 are
selected to compare with software implementation on
1ANN: Artificial Neural Network; 2DBN: Deep Belief Network; 3SNN:
Spiking Neural Network

11



Table 6. Comparison among Various SC-DCNN Designs Implementing LeNet 5
No. Pooling Bit Configuration Performance

Stream Layer 0 Layer 1 Layer 2 Inaccuracy (%) Area (mm2 ) Power (W ) Delay (ns) Energy (µJ)
1

Max

1024 MUX MUX APC 2.64 19.1 1.74 5120 8.9
2 MUX APC APC 2.23 22.9 2.13 5120 10.9
3 512 APC MUX APC 1.91 32.7 3.14 2560 8.0
4 APC APC APC 1.68 36.4 3.53 2560 9.0
5 256 APC MUX APC 2.13 32.7 3.14 1280 4.0
6 APC APC APC 1.74 36.4 3.53 1280 4.5
7

Average

1024 MUX APC APC 3.06 17.0 1.53 5120 7.8
8 APC APC APC 2.58 22.1 2.14 5120 11.0
9 512 MUX APC APC 3.16 17.0 1.53 2560 3.9
10 APC APC APC 2.65 22.1 2.14 2560 5.5
11 256 MUX APC APC 3.36 17.0 1.53 1280 2.0
12 APC APC APC 2.76 22.1 2.14 1280 2.7

Table 7. List of Existing Hardware Platforms
Platform Dataset Network Year Platform Area Power Accuracy Throughput Area Efficiency Energy Efficiency

Type Type (mm2) (W) (%) (Images/s) (Images/s/mm2) (Images/J)
SC-DCNN (No.6)

MNIST

CNN

2016 ASIC 36.4 3.53 98.26 781250 21439 221287
SC-DCNN (No.11) 2016 ASIC 17.0 1.53 96.64 781250 45946 510734

2×Intel Xeon W5580 2009 CPU 263 156 98.46 656 2.5 4.2
Nvidia Tesla C2075 2011 GPU 520 202.5 98.46 2333 4.5 3.2

Minitaur (32) ANN1 2014 FPGA N/A ≤1.5 92.00 4880 N/A ≥3253
SpiNNaker (39) DBN2 2015 ARM N/A 0.3 95.00 50 N/A 166.7

TrueNorth (11; 12) SNN3 2015 ASIC 430 0.18 99.42 1000 2.3 9259
DaDianNao (7) ImageNet CNN 2014 ASIC 67.7 15.97 N/A 147938 2185 9263
EIE-64PE (14) CNN layer 2016 ASIC 40.8 0.59 N/A 81967 2009 138927

CPU server or GPU. No.6 is selected because it is the
most accurate max pooling-based configuration. No.11 is
selected because it is the most energy efficient average
pooling-based configuration. According to Table 7, the
proposed SC-DCNNs are much more area efficient: the area
of Nvidia Tesla C2075 is up to 30.6× of the area of SC-
DCNN (No.11). Moreover, our proposed SC-DCNNs also
have outstanding performance in terms of throughput, area
efficiency, and energy efficiency. Compared with Nvidia
Tesla C2075, the SC-DCNN (No.11) achieves 15625×
throughput improvements and 159604× energy efficiency
improvements.

Although LeNet5 is relatively small, it is still a represen-
tative DCNN. Most of the computation blocks of LeNet5 can
be applied to other networks (e.g. AlexNet). Based on our
experiments, inside a network, the inaccuracy introduced by
the SC-based components can significantly compensate each
other. Therefore, we expect that SC-induced inaccuracy will
be further reduced with larger networks. We also anticipate
higher area/energy efficiency in larger DCNNs. Many of the
basic computations are the same for different types of net-
works, thus the significant area/energy efficiency improve-
ment in each component will result in improvement of the
whole network (compared with binary designs) for different
network sizes/types. In addition, when the network is larger,
there are potentially more optimization space for further im-
proving the area/energy efficiency. Therefore, we claim that
the proposed SC-DCNNs have good scalability. The inves-
tigations on larger networks will be conducted in our future
work.

7. Conclusion
In this paper, we propose SC-DCNN, the first comprehen-
sive design and optimization framework of SC-based DC-
NNs. SC-DCNN fully utilizes the advantages of SC and
achieves remarkably low hardware footprint, low power and
energy consumption, while maintaining high network accu-
racy. We fully explore the design space of different com-
ponents to achieve high power (energy) efficiency and low
hardware footprint. First, we investigated various function
blocks including inner product calculations, pooling oper-
ations, and activation functions. Then we propose four de-
signs of feature extraction blocks, which are in charge of ex-
tracting features from input feature maps, by connecting dif-
ferent basic function blocks with joint optimization. More-
over, three weight storage optimization schemes are investi-
gated for reducing the area and power (energy) consumption
of SRAM. Experimental results demonstrate that our pro-
posed SC-DCNN achieves low hardware footprint and low
energy consumption. It achieves the throughput of 781250
images/s, area efficiency of 45946 images/s/mm2, and en-
ergy efficiency of 510734 images/J.

8. Acknowledgement
We thank anonymous reviewers for their valuable feedback.
This work is funded in part by the seedling fund of DARPA
SAGA program under FA8750-17-2-0021. Besides, this
work is also supported by Natural Science Foundation of
China (61133004, 61502019) and Spanish Gov. & European
ERDF under TIN2010-21291-C02-01 and Consolider
CSD2007-00050.

12



References
[1] Stanford cs class, cs231n: Convolutional neural networks for

visual recognition, 2016. URL http://cs231n.github.

io/convolutional-networks/.

[2] Convolutional neural networks (lenet), 2016. URL
http://deeplearning.net/tutorial/lenet.html#

motivation.

[3] Nangate 45nm Open Library, Nangate Inc., 2009. URL http:

//www.nangate.com/.

[4] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza,
J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta,
G.-J. Nam, B. Taba, M. Beakes, B. Brezzo, J. B. Kuang,
R. Manohar, W. P. Risk, B. Jackson, and D. S. Modha.
Truenorth: Design and tool flow of a 65 mw 1 million neu-
ron programmable neurosynaptic chip. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
34(10):1537–1557, 2015.

[5] R. Andri, L. Cavigelli, D. Rossi, and L. Benini. Yodann:
An ultra-low power convolutional neural network accelerator
based on binary weights. arXiv preprint arXiv:1606.05487,
2016.

[6] B. D. Brown and H. C. Card. Stochastic neural computation.
i. computational elements. IEEE Transactions on computers,
50(9):891–905, 2001.

[7] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li,
T. Chen, Z. Xu, N. Sun, and O. Temam. Dadiannao: A
machine-learning supercomputer. In Proceedings of the 47th
Annual IEEE/ACM International Symposium on Microarchi-
tecture, pages 609–622. IEEE Computer Society, 2014.

[8] R. Collobert and J. Weston. A unified architecture for natural
language processing: Deep neural networks with multitask
learning. In Proceedings of the 25th international conference
on Machine learning, pages 160–167. ACM, 2008.

[9] L. Deng. The mnist database of handwritten digit images for
machine learning research. IEEE Signal Processing Maga-
zine, 29(6):141–142, 2012.

[10] L. Deng and D. Yu. Deep learning. Signal Processing, 7:3–4,
2014.

[11] S. K. Esser, R. Appuswamy, P. Merolla, J. V. Arthur, and D. S.
Modha. Backpropagation for energy-efficient neuromorphic
computing. In Advances in Neural Information Processing
Systems, pages 1117–1125, 2015.

[12] S. K. Esser, P. A. Merolla, J. V. Arthur, A. S. Cassidy, R. Ap-
puswamy, A. Andreopoulos, D. J. Berg, J. L. McKinstry,
T. Melano, D. R. Barch, C. di Nolfo, P. Datta, A. Amir,
B. Taba, M. D. Flickner, and D. S. Modha. Convolutional
networks for fast, energy-efficient neuromorphic computing.
CoRR, abs/1603.08270, 2016. URL http://arxiv.org/

abs/1603.08270.

[13] B. R. Gaines. Stochastic computing. In Proceedings of the
April 18-20, 1967, spring joint computer conference, pages
149–156. ACM, 1967.

[14] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz,
and W. J. Dally. Eie: efficient inference engine on compressed
deep neural network. arXiv preprint arXiv:1602.01528, 2016.

[15] M. Hu, H. Li, Y. Chen, Q. Wu, G. S. Rose, and R. W. Lin-
derman. Memristor crossbar-based neuromorphic computing
system: A case study. IEEE transactions on neural networks
and learning systems, 25(10):1864–1878, 2014.

[16] Y. Ji, F. Ran, C. Ma, and D. J. Lilja. A hardware implemen-
tation of a radial basis function neural network using stochas-
tic logic. In Proceedings of the 2015 Design, Automation &
Test in Europe Conference & Exhibition, pages 880–883. EDA
Consortium, 2015.

[17] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional
architecture for fast feature embedding. In Proceedings of
the 22nd ACM international conference on Multimedia, pages
675–678. ACM, 2014.

[18] P. Judd, J. Albericio, T. Hetherington, T. Aamodt, N. E. Jerger,
R. Urtasun, and A. Moshovos. Reduced-precision strategies
for bounded memory in deep neural nets. arXiv preprint
arXiv:1511.05236, 2015.

[19] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar,
and L. Fei-Fei. Large-scale video classification with convo-
lutional neural networks. In Proceedings of the IEEE con-
ference on Computer Vision and Pattern Recognition, pages
1725–1732, 2014.

[20] K. Kim, J. Lee, and K. Choi. Approximate de-randomizer for
stochastic circuits. Proc. ISOCC, 2015.

[21] K. Kim, J. Kim, J. Yu, J. Seo, J. Lee, and K. Choi. Dynamic
energy-accuracy trade-off using stochastic computing in deep
neural networks. In Proceedings of the 53rd Annual Design
Automation Conference, page 124. ACM, 2016.

[22] K. Kim, J. Lee, and K. Choi. An energy-efficient random
number generator for stochastic circuits. In 2016 21st Asia
and South Pacific Design Automation Conference (ASP-DAC),
pages 256–261. IEEE, 2016.

[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Advances in neural information processing systems, pages
1097–1105, 2012.

[24] D. Larkin, A. Kinane, V. Muresan, and N. OConnor. An
efficient hardware architecture for a neural network activation
function generator. In International Symposium on Neural
Networks, pages 1319–1327. Springer, 2006.

[25] E. László, P. Szolgay, and Z. Nagy. Analysis of a gpu based
cnn implementation. In 2012 13th International Workshop on
Cellular Nanoscale Networks and their Applications, pages
1–5. IEEE, 2012.

[26] Y. LeCun. Lenet-5, convolutional neural networks. URL:
http://yann. lecun. com/exdb/lenet, 2015.

[27] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature,
521(7553):436–444, 2015.

[28] J. Li, A. Ren, Z. Li, C. Ding, B. Yuan, Q. Qiu, and Y. Wang.
Towards acceleration of deep convolutional neural networks
using stochastic computing. In The 22nd Asia and South Pa-
cific Design Automation Conference (ASP-DAC). IEEE, 2017.

[29] Z. Li, A. Ren, J. Li, Q. Qiu, Y. Wang, and B. Yuan.
Dscnn: Hardware-oriented optimization for stochastic com-
puting based deep convolutional neural networks. In Com-

13

http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/convolutional-networks/
http://deeplearning.net/tutorial/lenet.html#motivation
http://deeplearning.net/tutorial/lenet.html#motivation
http://www.nangate.com/
http://www.nangate.com/
http://arxiv.org/abs/1603.08270
http://arxiv.org/abs/1603.08270


puter Design (ICCD), 2016 IEEE 34th International Confer-
ence on, pages 678–681. IEEE, 2016.

[30] Z. Li, A. Ren, J. Li, Q. Qiu, B. Yuan, J. Draper, and Y. Wang.
Structural design optimization for deep convolutional neural
networks using stochastic computing. 2017.

[31] M. Motamedi, P. Gysel, V. Akella, and S. Ghiasi. De-
sign space exploration of fpga-based deep convolutional neu-
ral networks. In 2016 21st Asia and South Pacific Design
Automation Conference (ASP-DAC), pages 575–580. IEEE,
2016.

[32] D. Neil and S.-C. Liu. Minitaur, an event-driven fpga-based
spiking network accelerator. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 22(12):2621–2628, 2014.

[33] B. Parhami and C.-H. Yeh. Accumulative parallel counters.
In Signals, Systems and Computers, 1995. 1995 Conference
Record of the Twenty-Ninth Asilomar Conference on, vol-
ume 2, pages 966–970. IEEE, 1995.

[34] A. Ren, Z. Li, Y. Wang, Q. Qiu, and B. Yuan. Designing re-
configurable large-scale deep learning systems using stochas-
tic computing. In 2016 IEEE International Conference on
Rebooting Computing. IEEE, 2016.

[35] T. N. Sainath, A.-r. Mohamed, B. Kingsbury, and B. Ramab-
hadran. Deep convolutional neural networks for lvcsr. In 2016
IEEE International Conference on Acoustics, Speech and Sig-
nal Processing, pages 8614–8618. IEEE, 2013.

[36] S. Sato, K. Nemoto, S. Akimoto, M. Kinjo, and K. Nakajima.
Implementation of a new neurochip using stochastic logic.
IEEE Transactions on Neural Networks, 14(5):1122–1127,
2003.

[37] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[38] G. V. STOICA, R. DOGARU, and C. Stoica. High perfor-
mance cuda based cnn image processor, 2015.

[39] E. Stromatias, D. Neil, F. Galluppi, M. Pfeiffer, S.-C. Liu, and
S. Furber. Scalable energy-efficient, low-latency implemen-
tations of trained spiking deep belief networks on spinnaker.
In 2015 International Joint Conference on Neural Networks
(IJCNN), pages 1–8. IEEE, 2015.

[40] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams.
The missing memristor found. nature, 453(7191):80–83,
2008.

[41] M. Tanomoto, S. Takamaeda-Yamazaki, J. Yao, and
Y. Nakashima. A cgra-based approach for accelerating convo-
lutional neural networks. In Embedded Multicore/Many-core
Systems-on-Chip (MCSoC), 2015 IEEE 9th International
Symposium on, pages 73–80. IEEE, 2015.

[42] S. Thoziyoor, N. Muralimanohar, J. Ahn, and N. Jouppi. Cacti
5.3. HP Laboratories, Palo Alto, CA, 2008.

[43] S. Toral, J. Quero, and L. Franquelo. Stochastic pulse coded
arithmetic. In Circuits and Systems, 2000. Proceedings. IS-
CAS 2000 Geneva. The 2000 IEEE International Symposium
on, volume 1, pages 599–602. IEEE, 2000.

[44] L. Xia, B. Li, T. Tang, P. Gu, X. Yin, W. Huangfu, P.-Y. Chen,
S. Yu, Y. Cao, Y. Wang, Y. Xie, and H. Yang. Mnsim: Simu-
lation platform for memristor-based neuromorphic computing

system. In 2016 Design, Automation & Test in Europe Con-
ference & Exhibition (DATE), pages 469–474. IEEE, 2016.

[45] B. Yuan, C. Zhang, and Z. Wang. Design space exploration
for hardware-efficient stochastic computing: A case study
on discrete cosine transformation. In 2016 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 6555–6559. IEEE, 2016.

[46] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong. Op-
timizing fpga-based accelerator design for deep convolutional
neural networks. In Proceedings of the 2015 ACM/SIGDA In-
ternational Symposium on Field-Programmable Gate Arrays,
pages 161–170. ACM, 2015.

14


	1 Introduction
	2 Related Works
	3 Overview of DCNN Architecture and Stochastic Computing
	3.1 DCNN Architecture Overview
	3.2 Stochastic Computing (SC)
	3.3 Application-level vs. Hardware Accuracy

	4 Design and Optimization for Function Blocks and Feature Extraction Blocks in SC-DCNN
	4.1 Inner Product/Convolution Block Design
	4.2 Pooling Block Designs
	4.3 Activation Function Block Designs
	4.4 Design & Optimization for Feature Extraction Blocks

	5 Weight Storage Scheme and Optimization
	5.1 Efficient Filter-Aware SRAM Sharing Scheme
	5.2 Weight Storage Method
	5.3 Layer-wise Weight Storage Optimization

	6 Overall SC-DCNN Optimizations and Results
	6.1 Optimization Results on Feature Extraction Blocks
	6.2 Layer-wise Feature Extraction Block Configurations
	6.3 Overall Optimizations and Results on SC-DCNNs

	7 Conclusion
	8 Acknowledgement

