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Abstract—Spike-Timing Dependent Plasticity (STDP), the canoni-
cal learning rule for spiking neural networks (SNN), is gaining tremen-
dous interest because of its simplicity, efficiency and biological plausibil-
ity. However, to date, multilayer feed-forward networks of spiking neu-
rons are either only partially trained using STDP or pre-trained using 
traditional deep neural networks which are converted to deep spiking 
neural networks or a two-layer network where STDP learnt features 
are manually labelled. In this work, we present a low-cost, simplified, 
yet stable STDP rule for layer-wise unsupervised and supervised train-
ing of a multilayer feed-forward SNN. We propose to approximate 
Bayesian neuron using Stochastic Integrate and Fire (SIF) neuron 
model and introduce a supervised learning approach using teacher neu-
rons to train the classification layer with one neuron per class. A SNN is 
trained for classification of handwritten digits with multiple layers of 
spiking neurons, including both the feature extraction and classification 
layer, using the proposed STDP rule. Our method achieves comparable 
to better accuracy on MNIST dataset than manually labelled two layer 
networks for the same sized hidden layer. We also analyze the parame-
ter space to provide rationales for parameter fine-tuning and provide 
additional methods to improve noise resilience and input intensity vari-
ations. We further propose a Quantized 2-Power Shift (Q2PS) STDP 
rule, which reduces the implementation cost of digital hardware while 
achieves comparable performance. 

Keywords—spiking neural network; STDP; digit recognition; unsu-
pervised learning; supervised learning; quantized STDP 

I. INTRODUCTION 
The brain’s ability to perform complex tasks such as pattern 

recognition, classification and inference with merely 10-20 watts [1] 
[2] is far superior to any state-of-the-art computer system. This arises 
from the fact that action potential (spike) of neurons (processing 
units) in the brain are used to process information in biological neural 
networks. Here, the communication of information is asynchronous 
and event driven, thus utilizing energy only when required. This 
mechanism is most closely modeled with Spiking Neural Networks 
(SNNs), the third generation of neural networks [3]. In today’s world 
of Internet of Things, large amounts of data need to be processed and 
a major concern is the energy consumption. Mimicking the brains 
massive computation capability and energy efficiency is gaining tre-
mendous interest and novel spiking neural network (SNN) imple-
mentations are actively being researched upon to achieve this goal. 

Developments in this domain of neural networks have been pur-
sued along two different branches. With the first approach, biologi-
cally plausible SNNs are developed to model biochemical principles 
from neuroscience aspects of the brain. These models solve 

differential equations which are computationally expensive and thus, 
are not functionally efficient for large scale systems [4] [5]. The sec-
ond class of works are functional models at abstract level, which are 
far from biological brain in terms of computational principles. They 
are built from deep networks trained through backpropagation, and 
then converted into spike domain through various methods [6] [7]. 
In this work, we use a spike-based learning approach utilizing the 
primary learning method in biological neurons called Spike Timing 
Dependent Plasticity (STDP). This approach is more biologically 
plausible and with simplifications, garners to large-scale implemen-
tations as well. 

STDP is a learning rule that potentiates or depresses a synapse 
depending on the relative timing between single pre and post-synap-
tic spikes [8]: long-term potentiation (LTP) occurs if the pre-synaptic 
spike arrives before the post-synaptic spike and long-term depres-
sion (LTD) occurs otherwise. It is local as it always pertains to a pair 
of pre- and post-synaptic neurons. And although it is correlation-
based and causality is important for the synaptic plasticity, it differs 
from the Hebbian learning rule as STDP also requires temporal prec-
edence [8]. Purely rate-based Hebbian rules on its own leads to 
runaway processes of potentiation causing instability. That requires 
additional constraints and mechanisms [9] [10] for containment. 
Whereas many theoretical studies concerned with non-Hebbian 
rules of plasticity look for desirable properties, such as a trend to-
wards inherent stability in weight distribution, neural activity and 
competition among correlated inputs. STDP rules which are inde-
pendent of the current synaptic weight (additive STDP) [11] induces 
competition but need mechanisms to prevent weights from either 
disappearing or exploding. Weight-dependent STDP rules (multipli-
cative STDP) [12] are inherently stable producing unimodal weight 
distribution but induce weak competition thus requiring additional 
mechanisms to induce competition [13]. These additional mecha-
nisms increase complexity in their implementation. This is undesir-
able when it comes to large-scale or neuromorphic hardware imple-
mentations. In this work, we introduce a variation of a weight-de-
pendent STDP rule which is inherently stable and yet simple and 
lends well to computationally efficient and inexpensive implemen-
tations. 

STDP is known to be selective to patterns. When used in a net-
work with lateral inhibition producing a Winner Take All (WTA) 
effect, STDP allows for learning discriminative features without su-
pervision [14]. These features could either be used as intermediate 
features [15] or could be labelled [14] for classification. In addition 
to improving the STDP rule for unsupervised learning, in this work 
we also apply it for supervised learning by introducing teacher neu-
rons. The unsupervised feature learning and unsupervised classifier 
learning are stacked forming a multilayer SNN trained with STDP.  This work is partially supported by the National Science Foundation 
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The main contributions of this work are summarized as follow-
ing. 
1. We present a simplified approximation of conventional 

Bayesian neuron and an improved STDP rule with extended 
LTD window, exponential weight dependence and different 
learning rates during LTD and LTP. Experimental results show 
that the modified STDP rule provides stable and competitive 
learning. 

2. A layer-wise approach is used to combine unsupervised and su-
pervised STDP learning and train a multilayer SNN on MNIST 
dataset. It achieves comparable or better accuracy for handwrit-
ten digit recognition than other existing STDP approaches with 
the similar size of trainable parameters and manually labelled 
features for classification. The parameter space is analyzed to 
further fine-tune the network. 

3. We introduce an approximation of our STDP rule named Quan-
tized 2-Power Shift (Q2PS) rule which is hardware implemen-
tation friendly. This approximation produces comparable re-
sults on the handwritten recognition to the original STDP rule.  

The remainder of the paper is organized as the following. In Sec-
tion II we discuss the related work, in Section III we introduce the 
proposed STDP rule and its stability, and the Quantized 2-Power 
Shift STDP rule. Section IV presents the network architecture and 
layer-wised learning that are used for MNIST classification. The re-
sults and the parameter space analysis are presented in Section V and 
finally, is the conclusions.  

II. RELATED WORKS 
There are many variations of STDP learning rule. Additive 

STDP [11] induces competition among inputs but require hard 
weight constraints. Multiplicative STDP rules [12] are stable and 
unimodal with no or weak competition between inputs. This again 
requires complementary mechanisms such as rate normalization, 
weight scaling [16], homeostasis [14] and activity-dependent scaling 
[13]. These mechanisms add complexities either onto the neuron 
model or the synapse model. In this work, we introduce a simplified 
STDP rule which is stable but also develops good competition 
among correlated inputs utilizing an elongated symmetric STDP 
window. 

The STDP rules are also used in various ways for different ap-
plications. [15] use STDP to learn intermediate features in a single 
layer in a deep SNN for recognizing faces. [14] train a layer of neu-
rons on handwritten digits without supervision using STDP, label 
them afterwards and then utilize the now labelled neurons firing rates 
to classify the test digits. [17] also, use a similar approach. In the 
work, along with learning the features without supervision, we com-
bine it with a classification layer that is trained with teacher neurons 
on top of the trained features. Here we train the combination layer-
wise. [18] also adopts a “teacher signal” to train classifier neurons 
for their evolving SNN using a STDP rule similar to additive STDP 
with fixed minimum and maximum weights where the weights sat-
urate at whereas [19] requires multiple classifier neurons per class 
for a SNN using event-driven Contrastive Divergence. 

Some implementations of STDP rule is complex with several 
parameters involved. [14] use presynaptic and postsynaptic traces, 
weight constraints and additional factors for weight dependence, 
whereas [17] use normalized weights using the weight constraints. 
Because of the complexity in the STDP rules and complementary 
mechanisms in the neuron models, implementing them in hardware 
becomes expensive. Thus, in this work, we reduce the STP rule to 
the bare bones to simplify it and then further propose Quantized 2-

power shift rule which is neuromorphic hardware implementation 
friendly. 

III. SIMPLIFIED BAYESIAN NEURON AND STDP RULES 
In this section, we describe the neuron and the synapse model 

and discuss the simplifications that allows for an efficient implemen-
tation. We also discuss the network architecture for the MNIST digit 
pattern recognition and the methods used for its implementation.  

A. Neuron Model 

 
We utilize the generic Bayesian neuron model proposed in [20] 

as the starting point and simplify the overall computation model as 
mentioned in [21]. For this model, we propose a stable and simpli-
fied STDP rule for efficient online learning. Bayesian model has two 
computational stages as compared to the regular integrate and fire 
neuron. The first being the exponential function and the other being 
the Poisson firing. In the generic neuron model as shown in Fig. 1, 
the membrane potential of neuron Z is computed as 

 (1) 

where  is the weight of the synapse connecting  to its ith 
presynaptic neuron ,  is 1 if  issues a spike at time , and 

 models the intrinsic excitability of the neuron . The stochastic 
firing model for , in which the firing probability depends 
exponentially on the membrane potential, is expressed as 

(2)
In (1), small variations of  resulting from the synaptic 

weight changes will have an exponential impact on the firing 
probability, which is not desirable. A range mapping function is pro-
posed as detailed in [22] to mitigate this effect. But this introduces 
additional complexities.  

Since the probability of the Bayesian neuron’s output firing rate 
has an exponential dependence on the membrane potential, the com-
putation must be limited to a small region of the exponential curve. 
This keeps the neuron computation within its dynamic range, else it 
will saturate quickly or the firing probability builds up extremely 
slowly. This small region of exponential curve can be safely approx-
imated with a linear equation. However, the accumulation of 
weighted spikes approximates a linear function therefore a good dy-
namic range can be achieved. 

For a Bayesian neuron output firing pattern resembles a Poisson 
process. To model this, we randomly vary the threshold after every 
spike generation. By limiting the range of threshold change to a 
small interval which satisfies the exponential distribution with unit 
rate, we achieve a firing pattern which is similar to Poisson spiking 
behavior as described in the model. With these simplifications and 
approximations, we can replace the Bayesian neuron model with an 
Integrate and Fire neuron with stochastic threshold model. The gen-
eral behavior of neuron is still similar to the Bayesian neuron model 
even with these simplifications. Now the membrane potential 

of neuron Z is computed as 

 
Fig. 1. Generic neuron model 
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  (3) 
The neuron Z spikes when the membrane potential crosses the 

threshold and is set to 0 (reset potential). 

B. Stable STDP Rule 
STDP forms the basis for learning in our synapse model . We 

use a multiplicative STDP rule where the amount of weight increase 
scales inversely with present weight size. Thus, learning is inherently 
stable and robust producing a unimodal weight distribution. But it 
lacks synaptic competition which is an attractive feature which ena-
bles learning discriminative features in the input. In sharp contrast, 
in additive STDP the weight change is independent of the current 
weight producing a bimodal distribution of weights and strong com-
petition. But without any hard weight constraints, the learning is 
fragile and unstable.  

We model our multiplicative STDP rule such that weight change 
of a synapse has an exponential dependence on its current weight as 
shown in Fig. 2(a). Thus, in the text we refer to this rule as the Exp 
rule. Update for the weight  of ith synapse of the neuron Z from (3) 
is calculated as below.  

If   
then,  (4) 

If  
then,  (5) 

Where  are the time steps at which the pre and 
post-synaptic neuron spikes,  are the LTP and LTD 
window and  and  are the LTP and LTD learning rates re-
spectively. The intrinsic excitability  of neuron Z from (3) is po-
tentiated when neuron Z fires and depressed when it doesn’t fire with 
the same exponential weight dependency as for the synaptic weights. 
These updates are linearly added to their current counterpart. 

Plasticity is implemented with LTP and LTD windows as shown 
in Fig. 2 (b): when a postsynaptic spike occurs after a presynaptic 
spike and is within the LTP window, the synapse is potentiated ac-
cording to (4). We assume all the STDP events to be independent 
such that only the first postsynaptic spike causes potentiation on that 
synapse even when the subsequent postsynaptic spikes are within the 
LTP window. If the postsynaptic spike falls outside the LTP window 
or there is no presynaptic spike, then the synapse is depressed as per 
(5). And similarly, only the first presynaptic spike within the LTD 
window after a given spike depresses the synapse; subsequent pre-
synaptic spikes do not depress the synapse further before another 
postsynaptic spike occurs. Whereas a presynaptic spike outside the 
LTD window neither potentiate nor depress the synapse.  

Ubiquity and fidelity of STDP as a general learning rule [23] [24] 
has regularly been in question despite it being biologically realistic. 
Phenomenological STDP rules that have simple biological 
precedence such as rate-based and spike-timing based models, are 
inherently unstable [13]. For proper utilization, they demand com-
plementary mechanisms. Biologically-inspired mechanisms and ad-
hoc mechanisms such as weight constraints, weight normalization 
[16], firing rate normalization and homeostasis [14] are usually used. 
These add computational complexity when simplicity is necessary 
especially for an efficient and large-scale implementation.  

The above mentioned complementary mechanisms are not re-
quired for our STDP rule presented in (4) and (5) as it is inherent 
stable. The stability of a STDP rule can be shown with three main 
properties [25] [26]: (a) shape of the weight distribution is stable over 
time such that even if the synaptic weights change, the distribution 
follow similar pattern, (b) unimodal distribution such that all the 
weights are not concentrated at the boundaries and (c) limited 
weights without hard weight constraints such that no synaptic 
weights explode. We check our STDP rule for these properties 
through simulations to verify its stability empirically. 

  
                                    (a)                                                                (c)                                                                (e) 

  
                                    (b)                                                                 (d)                                                                 (f) 
Fig. 2.(a) Current weight vs Weight change for learning rates (b) STDP windows (c) Stable unimodal distribution over period of learning (20, 60 and 100% of final 

distribution) (d) Convergence of mean absolute weight change (e) Bimodal distribution over period of learning (f) Learnt weights for pixel intensities 
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Fig. 2 (c) shows the distribution of synaptic weight during dif-
ferent learning stages when the input to the network with one SIF 
neuron and 28x28 input neurons is random and uncorrelated, and the 
synapse is updated through our STDP rule. Pertaining to the proper-
ties of a stable STDP rule. Fig. 2 (c) shows that our method resonates 
those properties very closely. The distribution achieved is unimodal, 
and its shape is stable over the period of learning. And the weights 
are naturally constrained between soft limits imposed by the formu-
lation of the rule itself and not with any complimentary mechanism. 
Fig. 2 (a) shows that the weight updates are exponentially propor-
tional to the current weights during both LTP and LTD; If the current 
weight is highly positive, then it is penalized with a lower weight 
update for LTP case (larger weight update for LTD case). On the 
contrary if the current weight is highly negative, then larger weight 
update is produced for LTP case (lower weight update for LTD 
case). Because of this weight dependence, strong synapses experi-
ence a net depression, whereas weak synapses experience a net po-
tentiation whose magnitudes are controlled separately through sepa-
rate learning rates for LTP and LTD in our STDP rule. This net de-
pression and potentiation confines the synaptic weights and stabi-
lizes the weight distribution. As the mean absolute weight change 
converges asymptotically, distribution reaches an equilibrium and 
becomes stationary. We can see that in Fig. 2 (c) where the change 
in weight distribution decreases and becomes stationary as the mean 
absolute weight change shown in Fig. 2 (d) converges and remains 
in that equilibrium. 

Usually in weight-dependent STDP models, there is a lack of 
competition [13]. Competition between inputs allows for a specific 
set of input synapses to drive a neuron into firing. This is important 
for discriminative applications. In STDP models in which potentia-
tion and depression are independent of the synaptic weight, there is 
strong competition [12] [27]. In these models of constrained plastic-
ity, the potentiation mainly occurs if the input has caused the spike. 
When one input starts driving the postsynaptic spikes and its weight 
increases, the other inputs will become less correlated with the 
postsynaptic spikes, and these inputs will effectively be depressed. 
This pushes the distribution of the weights towards the applied hard 
constraints forming a bimodal distribution. 

To replicate such competitive behavior amongst the inputs and 
still maintain a stable distribution, [13] utilizes Activity-dependent 
scaling of the synaptic weights. Activity-dependent scaling is a ho-
meostatic mechanism in which the neuron reacts to changes in the 
postsynaptic activity, scales all synapses to keep the activity of the 
neuron within bounds. The scaling is multiplicative. If one synapse 
is potentiated, the postsynaptic activity rises, and the activity-de-
pendent scaling kicks in to reduce all the synaptic weights. The shape 
and stability of the weight distribution are not affected by the scaling. 

In our STDP model, behavior similar to activity-dependent scal-
ing is induced through the elongated symmetric STDP window used 
as shown in Fig. 2 (b). LTD not only happens when the presynaptic 
spike falls in the LTD window but also when the postsynaptic spike 
falls outside LTP window or there is no presynaptic spike at all. So, 
when a certain synapse is potentiated due to strong correlation, syn-
apses with weak correlation are depressed along with synapses with 
no correlation. This induces good competition and learns discrimi-
native separation even between correlated inputs.   When trained on 
a MNIST image, this induces good competition producing a distri-
bution similar to that of the input or a bimodal distribution with 
sparse strong synapses and dense weak or silent synapses [28] as 
seen in Fig. 2 (e). And Fig. 2 (f) shows that higher pixel intensities 
induce higher weights whereas lower pixel intensities induce lower 
to negative weights in corresponding synapses driving weights to 

clusters in opposite ends reiterating the sharpness of the discrimina-
tive ability.  

One important feature of the Bayesian neuron model is that it 
allows for neural sampling [20] such that the weight of the synapse 
is the log conditional probability of pre-synaptic neuron firing given 
the post-synaptic neuron has fired with a log constant ( 

) and each spike is a sample of the posterior dis-
tribution. This allows for Bayesian inference. Using an exponential 
dependence of weight update on the current weight allows to retain 
the log conditional property as shown empirically by the correlation 
graph in Fig. 3. As the theoretical results remain true [20] for any 

, we choose . Under this condition the correlation co-
efficient of the synaptic weight and the log conditional probability 

 is 0.9885. This also accounts for 
learnt weights being positive and negative.  

C. Quantized 2-Power Shift Rule 
In terms of computation, the proposed STDP rule requires an ex-

ponential and a multiplication operation for both LTP and LTD for 
each synapse. From the perspective of efficient digital hardware 
implementation these are expensive operations in terms of circuit 
area and computation time as explained in [29].Thus, substituting 
these with simplified operations is highly desirable. In the next, we 
introduce a Quantized 2-power shift rule (Q2PS), which approxi-
mates our STDP rule in (4) by removing both multiplication and ex-
ponential. The approximation is summarized in (6) and (7). 

If   

  (6)
  

where .  

Similarly, If  

  (7)
  

where .  
We denote  for LTP and  for LTD, also 
let  be the quantization of  through priority encoding. This en-
coding converts the binary representation of  into a new binary rep-
resentation with the index of the most significant active input bit as 
the highest priority. For example, if  then its binary repre-
sentation is 1100. The priority encoding of this is 1000 hence 

. After the quantization, the change of the synaptic weight is calcu-
lated by shifting the value 1 by , either left of right, based on the 
sign of that result. In other words, for both cases 

 (8) 

 
Fig. 3. Correlation graph between synaptic weight and log conditional 

probability with constant c=30 
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where and represent binary shift left and shift right opera-
tions respectively. This approximation allows implementation of the 
STDP rule presented in (4) and (5) on digital hardware by using a 
priority encoder, negligibly small lookup to determine  from the 
encoded value, barrel shifter and an adder circuit. Please note that, 
based on (6) and (7),  should be calculated as , which can be 
obtained by shifting value 1 by Q. We refer to this as 2P 
approximation. However, because the value of  has much coarser 
resolution than Q, the implementation of Q2PS approximation is 
much simpler than the 2P approximation. We refer to the original 
STDP rule in (4) and (5) as Exp rule. Fig. 4 compares the  
calculated using the Exp, 2P and Q2PS rules, with a learning rate of 
0.08 for all the cases. As we can see, the Q2PS rule provides multi-
level quantization, which enables similar quality of trained weights 
even with approximations when compared to Exp rule. This way we 
can perform online learning in a quick and efficient manner from the 
hardware perspective with a smaller footprint in terms of circuit area 
and energy consumption. 

IV. EXPERIMENTS 
We build a spiking neural network to classify MNIST [30] hand-

written digits and perform analysis of our proposed STDP learning 
rules. Both supervised learning and unsupervised learning for train-
ing the entire network including the classifier layer is discussed. We 
use a SNN simulator SpNSim [22] to simulate all the experiments 
presented in the paper. SpNSim is a multithreaded and scalable sim-
ulation platform built using C++. It is flexible and vectorized for ef-
ficient evaluation and capable of handling large-scale networks of 
mixed neuron models. 

A. Network Architecture 
We create a 3-layer network as shown in Fig. 5. The input layer 

contains 28x28 neurons (one per pixel), the second layer has variable 
number of stochastic integrate and fire (SIF) neurons for different 
trials (the hidden layer), and the third layer is the classification layer 
with 10 SIF neurons (one per class). The input is fed to the input 
layer which encodes the pixel intensities with 0 Hz – 300 Hz firing 
rates and the classification result is obtained from the classification 
layer. Input layer is fully connected to the hidden layer, and hidden 
layer to the classification layer and all these synapses are plastic. 

Along with the SIF neurons, hidden and the classification layer 
neurons there are supporting ReLU neurons [22] for lateral inhibi-
tion. At both layers, the ReLU neurons (inhibitory) form WTA 
(Winner Take All) circuits with a connectivity as mentioned in [22]; 
one-to-one connection from SIF neurons to the ReLU neurons and 
the ReLU neurons are connected to all the SIF neurons except for 
the one from which it receives a connection. Hard or soft WTA 
behavior can be achieved based on the degree of inhibition delivered. 
Hard WTA happens when the inhibition is strong such that it brings 
down the firing rate of the non-preferred SIF neurons to zero, 

resulting in only one neuron with highest excitation being active. On 
the other hand, if plural voting action is required within the set, the 
degree of inhibition is tuned to be moderate. This makes SIF neurons 
fire with different stable rates which is, soft WTA behavior where 
firing rate is proportional to their relative excitation levels. 

The hidden layer learns features of the MNIST images and more 
than one neurons could learn feature concerning a certain class, thus 
requiring multiple neurons in the layer to be firing. Thus, the hidden 
layer is set to a soft WTA inhibition level. Whereas in the classifica-
tion layer, a neuron is associated with a class in a one-to-one basis 
thus requiring only one neuron to fire in a period. Hence the classifi-
cation layer is set to a hard WTA inhibition level. And these synap-
ses are not plastic. 

The stochasticity of the SIF neuron is important during learning 
to allow the neurons in both layers learn unique features. But having 
similar stochasticity during recall becomes counterproductive as in-
appropriate inputs could excite a certain feature in the hidden layer, 
and similarly incorrect feature could excite an incorrect neuron in the 
classification layer producing an incorrect classification. Thus, dur-
ing the recall phase, we disable learning and fix each neuron’s spik-
ing threshold to make them deterministic.  

B. Learning 
Using our STDP rule, we perform both unsupervised and super-

vised learning. STDP is known to have the effect of concentrating 
high synaptic weights on afferents that systematically fire early. It 
makes neurons naturally selective to patterns that are reliably present 
in the input. These patterns are learnt without supervision and can be 
used for categorization and discrimination. In this way, the hidden 
layer learns patterns from the input layer as shown in Fig. 5. 

For classification purposes, supervision is necessary to label the 
neurons that have learnt discriminative capabilities thus categoriza-
tion is in order during recall. In [14], the feature learning neurons are 
manually labeled after training and their collective firing rate are 
used to classify digits. This methodology creates issues in cases 
when the learnt feature is not of a distinguishable class or it is com-
mon to several classes e.g. slanted “1” is a sub feature of “7”, “3” has 
feature elements common to “5” and “8” and so on. Thus, labeling 
these features to one class or the other could lead to mislabeling of 
undistinguished features or underutilization of a common feature. To 
avoid such situations, we add a classification layer which learns in-
termediate features from all the available learnt features in the hidden 
layer without having to manually label them. The classification layer 
has one neuron per class to perform categorization such that the neu-
ron with the highest firing rate is the predicted class. And to train the 
classification layer, we introduce a supervised learning approach us-
ing our STDP rule on top of the already trained hidden layer. 

During supervised training in ANN, the neurons in the classifi-
cation layer are driven by the class labels and the error is propagated 
down the network layers. Here we add a neuron per class which fires 
at a specific rate based on the class being observed. We call this 
Teacher neuron. These neurons are connected one-to-one to the clas-
sification layer as shown in Fig. 5. They excite one neuron per class 
to fire at a specific rate when the label is presented. The teacher neu-
rons to classification layer neuron synapses are not learnt. However, 
it excites the connected classification neuron and creates differentia-
ble time dependent relations between the classification layer and the 
hidden layer. Based on our STDP rule, active input synapses from 
the classification layer to the hidden layer are potentiated and inac-
tive ones are depressed, thus propagating the error down through the 
incoming synapses  

  
Fig. 4. Comparison of the introduced STDP rules 
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V. RESULTS AND DISCUSSIONS 
In this section, we present the results on the handwritten digits 

classification. We also analyze the performance for different sets of 
parameters to present rationale on how to tune the network, and what 
could be adapted in case of noise and variable intensities in input 
images. Finally, we discuss the quality of the features learnt. 

A. Handwritten Digits Classification 
We trained a 3-layer network as presented in section IV with 10 

classification neurons and with 3 variations of hidden layers consist-
ing of 100, 400 and 1600 neurons. The training is done layer-wise; 
the input to hidden layer synapses are trained without supervision by 
presenting the complete training set once, and then the hidden to 
classification layer synapses are trained with supervision on top of 
the trained hidden layer by presenting the complete training set 
again. Each input neuron is connected to one pixel in the image and 
fires at a rate (maximum rate is 300Hz) that is proportional to the 
pixel intensity. No preprocessing is done on the images and we pre-
sent each training image for 200 time steps during training. The 
learnt features and hidden to classification layer synaptic weights are 
shown visualized in Fig. 5. The same parameters are used through-
out all these experiments. 

Fig. 5 also shows the t-SNE [31] visualizations for the input layer 
and the hidden layer which provides a qualitative analysis. This tech-
nique performs t-distributed stochastic neighbor embedding which 
maps high-dimensional data that lie on several different, but related, 
low-dimensional manifolds to lower dimensions by capturing local 
structure of the high-dimensional data. In our case 784 dimensions 
of input layer and 100 dimensions of feature layer are mapped to 2 
dimensions respectively. These visualizations are made using the fir-
ing rates of all the neurons in that layer. It is clear from the figure that 
the proposed STDP rule can form tight clustering of input space 
when mapping it into the feature space. This generates features that 
can be more easily classified by the classification layer. 

The three networks; 100, 400 and 1600 hidden neurons, 
achieved an average classification accuracy of 85, 87.4 and 89.7% 
for our STDP rule, respectively, as shown in Fig. 6. We achieve bet-
ter classification accuracy for networks with 100 and 400 hidden 
neurons compared to [14] for their respective network sizes, whereas 
for 1600 hidden neurons our results are slightly lower. This lower 

accuracy for high number of hidden neurons can be attributed to 
overfitting due to large number of trainable parameters per neuron 
for the classification layer. [14] don’t face this issue as they manually 
labelled the features for classification instead of classification layer 
trained on top of those learnt features. We could resolve this issue in 
the future by using dropout while training. The accuracies of 2P and 
Q2PS STDP rules for these networks are also shown in Fig. 6. As 
can be seen from the results, even with approximations and quanti-
zation, the Q2PS rule achieves accuracies reasonably close to the 
Exp STDP rule. 

B. Sensitivity Analysis 
Even with a simplified STDP rule and SIF neuron model, several 

parameters involved during learning and recall. As the networks are 
stochastic and no mathematical measures are present to pinpoint 
these parameters, it is important to empirically fine-tune them. This 
step is analogous to the process of selecting the hyper-parameters 
such as learning rate, momentums, etc., for a conventional artificial 
neural network. The empirical exploration of the parameter space 
was done for individual parameters within a sensible range through 
multi-model simulations on SpNSim to achieve optimal parameters 
used for all training and testing. This approach is similar to grid 
search. To show these parameter’s impact on the quality of learning, 
we present each parameter’s sensitivity relative to the optimal pa-
rameters in separate sensitivity graphs for training and testing param-
eters in Fig. 7 using the 3-layer MNIST classification SNN with 100 
hidden neurons as an example. The rationales on how to configure 
those parameters and their specific sensitivity are also discussed. 

1) Training parameters: STDP windows  , 
learning rates  and the training period for each input 
image are the important parameters during the training. Learning 
rates control the step size of weight updates. Larger step size leads to 
faster learning but also faster forgetting of the learnt features . Hence 
can result in overfitting of features. Given a training period, if the 
learning rates of LTP and LTD are equal and small (~10-3), it learns 
and retains features without overfitting. In Fig. 7 (a), while increas-
ing the learning rates, the performance increases, peaks at a certain 
rate and then start decreasing because of overfitted features. The 
quality of the learnt features on that peak learning rate value is dis-
cussed in Section V.E. Having higher LTP window allows more 
opportunities for potentiation. As our STDP rule is setup for 
competition among inputs, lower LTP window leads to high net 
depression. Thus we set the LTP window (50 time steps) higher than 
the LTD window (10 time steps). The LTP window determines how 
strongly correlated the input must be to be potentiated whereas the 
LTD window determines how strongly uncorrelated the input must 
be to be depressed. As discriminative features are present in corre-
lated inputs, the impact of LTP window is more which is visible in 
Fig. 7 (a). The training period per image is set such that weight 
updates with small step sizes have enough time to capture features 

Fig. 5. Network architecture showing the connectivity, input, learnt features 
by hidden and classification layer, the labels and t-SNE visualizations 

 
Fig. 6. Test accuracies for different sized networks 
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from an input. In Fig. 7 (a), we also see that at training period of 200 
time steps, the performance saturates. 

2) Testing parameters: Hidden and classification layer neuron 
thresholds and the computation period for each image are parameters 
during the testing. Decreasing and increasing threshold increases and 
decreases the firing rates respectively. Lower thresholds make the 
neurons extremely sensitive thus may allow unnecessary 
features/classifier neuron to also fire whereas very high thresholds 
might mean less sensitivity such that even a favorable 
feature/classifier neuron may not be able to gather enough excitation 
to fire in the testing period. As the hidden layer is exposed to the 
input, high sensitivity of a neuron in that layer is exploited by simi-
larity between different inputs. Thus in Fig. 7 (b) we see a sudden 
drop in the performance with decrease in hidden layer threshold 
whereas only a small drop for decrease in classification layer thresh-
old. Lower computation period decreases the latency from input to a 
classification result but leads to less time to resolve the result. Higher 
computation period increases the latency but allows for enough time 
to resolve the results as the inputs are rate coded. So, we use a com-
putation period where the accuracy starts saturating as seen in Fig. 7 
(b). 

C. Classifying Images with White Noise 
Background clutter is a common form of noise which reduces 

the effective contrast in a real-world image inputs. This reduces the 
discriminative properties between images. To test the resilience of 
our network at different levels of background clutter, we create arti-
ficial MNIST test sets with Additive White Gaussian Noise 
(AWGN) of different SNRs (15, 20 and 25). The results are shown 
in TABLE I. 

TABLE I. PERFORMANCE WITH AND WITHOUT ADAPTION IN PRESENCE OF 
AWGN NOISE 

AWGN noise SNR Without adaptation With adaptation 
15 19.1% 34.5% 
20 40.9% 83.9% 
25 78.6% 85% 

With the current temporal sparseness (maximum rate 300 Hz) 
for encoding the input, the AWGN noise has a significant impact on 
the accuracy. In biology, the LGN neuron in the early visual pathway 
employs an adaptive strategy [32] which decreases the temporal 
sparseness (increasing the firing rate) and shifts stimulus–response 
curves toward higher stimulus intensities when the effective contrast 
is reduced due to white noise. This reduces the spike-timing jitters 
induced by lower effective contrast by increasing the level of dis-
crimination (in terms of firing rate) between similar stimuli and ig-
nores low intensity stimuli in the background. We apply a similar 
adaptation strategy to deal with the AWGN noise. As shown in Fig. 
8, we shift the intensity-firing rate (stimulus-response) curve towards 
higher intensities and increase the range of the firing rate to 600 Hz. 
This leads to a dramatic improvement in accuracy in the presence of 

AWGN noise. But this comes with the decrease in sparsity and re-
duction in sensitivity to lower intensity discriminative properties. 

D. Classifying Images with Variable Intensity 
Resistance to variation in the image is important. The most com-

mon variation is the intensity of the image. In real life, lighting 
conditions result in different intensity images. Thus, we create artifi-
cial MNIST test sets with 25% intensity, 50% intensity and mixed 
intensity to test our network on. The results are shown in TABLE II. 

This leads into the discussion of when normalization becomes 
useful in our network. Normalization mechanisms allow for intrinsic 
modulation of the firing rates of the neurons in a layer; increase if the 
rate is low, and decrease if the rate is high. Thus, keeping all the neu-
rons approximately within a range of firing rates. With low intensity 
images, there can be a propensity of a lack of excitation for the neu-
rons in the hidden layer to fire and thus for the classification layer. 
This negatively impacts the classification layer’s ability to accurately 
categorize the image’s class.  

Normalization mechanisms such as homeostasis [14] and weight 
normalization or scaling [6] [33] add complexities onto the neuron 
model and the learning rule. With our aim of simplicity, we utilize 
the normalized winner-take-all (NWTA) mechanism as described in 
[21]. It adds three additional neurons in the hidden layer; upper lim-
iter (UL), lower limiter (LL), and exciter (Ex), which checks if the 
upper limit of the desired firing rate range is reached and increases 
lateral inhibition, checks if the lower limit of the desired firing rate is 
reached and provides additional excitation, respectively. We incor-
porate NWTA in the hidden layer as low intensity image directly 
impacts its firing rates. The results with and without NWTA mech-
anism is shown in TABLE II. for a network with 100 neurons in the 
hidden layer averaged over three experiments. 

TABLE II. PERFORMANCE WITH AND WITHOUT NWTA FOR DIFFERENT 
INTENSITY MNIST IMAGES 

Intensity level Without NWTA With NWTA 
25% 62.9% 79.7% 
50% 81.5% 84.1% 
100% 85% 84.9% 
Mixed 82.7% 84.4% 

From TABLE II, we can see that normalization results in im-
provement for lower intensity images whereas for normal intensity 
images normalization is redundant as the network was trained using 
normal intensity images. 

E. Quality of the learnt features 
During unsupervised learning, neurons in the hidden layer get 

associated with a class without supervision and learn common 
patterns of that class. These features, along with being 
discriminative, should also encapsulate variations of the associated 
class as well. 

  
                                       (a)                                                                       (b) 

Fig. 7. Sensitivity of recognition accuracy for % change in (a) training and (b) testing 
parameters from the optimal parameters. Only one parameter is varied at a time from base 

values for 100 hidden neuron network

 
Fig. 8. Firing rate curve with and without adaptation for 

different pixel intensities 
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For example, a color map of two features of class “1” is shown 
in Fig. 9. The feature in Fig. 9 (b) is overfit to a particular variation 
of “1” in the MNIST training set. It will not contribute to or will neg-
atively impact the classification when a different variation of “1” is 
presented, because it can lead to a lack of excitation for the neurons 
in the hidden layer to fire. Whereas in Fig. 9 (a) the feature has a 
strict core of “1” but a fuzziness around it such that the feature con-
tributes to the classification of different variation of “1”. That fuzzi-
ness could be considered as the remnant of the other 1’s that the neu-
ron has been exposed to. When we keep the learning rates low and 
equal for LTP and LTD (10-3), and increase the length of the LTP 
window (50 time steps) as compared to the LTD window (10 time 
steps), it provides the neuron more opportunities to learn other vari-
ations of “1” and only allows it to forget them slowly. Hence, leaving 
the fuzzy remnant. 

VI. CONCLUSION 
In this paper, we presented a simplified neuron model and 

introduced a stable and competition inducing STDP learning rule. 
With simplicity in terms of computation and hardware 
implementation being a motivating factor we also introduced Q2PS 
rule which can be implemented with minimal digital hardware 
resources. We also combined unsupervised and supervised learning 
with STDP using a layer-wise training approach, applied the 
network for handwritten digit classification with competitive results 
and provided analysis for parameter tuning. 
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