
Stable Spike-Timing Dependent Plasticity Rule for
Multilayer Unsupervised and Supervised Learning

Amar Shrestha, Khadeer Ahmed, Yanzhi Wang, Qinru Qiu
Department of Electrical Engineering and Computer Science, Syracuse University, NY 13244, USA

Email {amshrest, khahmed, ywang393, qiqiu} @syr.ed

Abstract—Spike-Timing Dependent Plasticity (STDP), the canoni-
cal learning rule for spiking neural networks (SNN), is gaining tremen-
dous interest because of its simplicity, efficiency and biological plausibil-
ity. However, to date, multilayer feed-forward networks of spiking neu-
rons are either only partially trained using STDP or pre-trained using
traditional deep neural networks which are converted to deep spiking
neural networks or a two-layer network where STDP learnt features
are manually labelled. In this work, we present a low-cost, simplified,
yet stable STDP rule for layer-wise unsupervised and supervised train-
ing of a multilayer feed-forward SNN. We propose to approximate
Bayesian neuron using Stochastic Integrate and Fire (SIF) neuron
model and introduce a supervised learning approach using teacher neu-
rons to train the classification layer with one neuron per class. A SNN is
trained for classification of handwritten digits with multiple layers of
spiking neurons, including both the feature extraction and classification
layer, using the proposed STDP rule. Our method achieves comparable
to better accuracy on MNIST dataset than manually labelled two layer
networks for the same sized hidden layer. We also analyze the parame-
ter space to provide rationales for parameter fine-tuning and provide
additional methods to improve noise resilience and input intensity vari-
ations. We further propose a Quantized 2-Power Shift (Q2PS) STDP
rule, which reduces the implementation cost of digital hardware while
achieves comparable performance.

Keywords—spiking neural network; STDP; digit recognition; unsu-
pervised learning; supervised learning; quantized STDP

I. INTRODUCTION
The brain’s ability to perform complex tasks such as pattern

recognition, classification and inference with merely 10-20 watts [1]
[2] is far superior to any state-of-the-art computer system. This arises
from the fact that action potential (spike) of neurons (processing
units) in the brain are used to process information in biological neural
networks. Here, the communication of information is asynchronous
and event driven, thus utilizing energy only when required. This
mechanism is most closely modeled with Spiking Neural Networks
(SNNs), the third generation of neural networks [3]. In today’s world
of Internet of Things, large amounts of data need to be processed and
a major concern is the energy consumption. Mimicking the brains
massive computation capability and energy efficiency is gaining tre-
mendous interest and novel spiking neural network (SNN) imple-
mentations are actively being researched upon to achieve this goal.

Developments in this domain of neural networks have been pur-
sued along two different branches. With the first approach, biologi-
cally plausible SNNs are developed to model biochemical principles
from neuroscience aspects of the brain. These models solve

differential equations which are computationally expensive and thus,
are not functionally efficient for large scale systems [4] [5]. The sec-
ond class of works are functional models at abstract level, which are
far from biological brain in terms of computational principles. They
are built from deep networks trained through backpropagation, and
then converted into spike domain through various methods [6] [7].
In this work, we use a spike-based learning approach utilizing the
primary learning method in biological neurons called Spike Timing
Dependent Plasticity (STDP). This approach is more biologically
plausible and with simplifications, garners to large-scale implemen-
tations as well.

STDP is a learning rule that potentiates or depresses a synapse
depending on the relative timing between single pre and post-synap-
tic spikes [8]: long-term potentiation (LTP) occurs if the pre-synaptic
spike arrives before the post-synaptic spike and long-term depres-
sion (LTD) occurs otherwise. It is local as it always pertains to a pair
of pre- and post-synaptic neurons. And although it is correlation-
based and causality is important for the synaptic plasticity, it differs
from the Hebbian learning rule as STDP also requires temporal prec-
edence [8]. Purely rate-based Hebbian rules on its own leads to
runaway processes of potentiation causing instability. That requires
additional constraints and mechanisms [9] [10] for containment.
Whereas many theoretical studies concerned with non-Hebbian
rules of plasticity look for desirable properties, such as a trend to-
wards inherent stability in weight distribution, neural activity and
competition among correlated inputs. STDP rules which are inde-
pendent of the current synaptic weight (additive STDP) [11] induces
competition but need mechanisms to prevent weights from either
disappearing or exploding. Weight-dependent STDP rules (multipli-
cative STDP) [12] are inherently stable producing unimodal weight
distribution but induce weak competition thus requiring additional
mechanisms to induce competition [13]. These additional mecha-
nisms increase complexity in their implementation. This is undesir-
able when it comes to large-scale or neuromorphic hardware imple-
mentations. In this work, we introduce a variation of a weight-de-
pendent STDP rule which is inherently stable and yet simple and
lends well to computationally efficient and inexpensive implemen-
tations.

STDP is known to be selective to patterns. When used in a net-
work with lateral inhibition producing a Winner Take All (WTA)
effect, STDP allows for learning discriminative features without su-
pervision [14]. These features could either be used as intermediate
features [15] or could be labelled [14] for classification. In addition
to improving the STDP rule for unsupervised learning, in this work
we also apply it for supervised learning by introducing teacher neu-
rons. The unsupervised feature learning and unsupervised classifier
learning are stacked forming a multilayer SNN trained with STDP. This work is partially supported by the National Science Foundation

under Grants CCF-1337300.

978-1-5090-6182-2/17/$31.00 ©2017 IEEE 1999

The main contributions of this work are summarized as follow-
ing.
1. We present a simplified approximation of conventional

Bayesian neuron and an improved STDP rule with extended
LTD window, exponential weight dependence and different
learning rates during LTD and LTP. Experimental results show
that the modified STDP rule provides stable and competitive
learning.

2. A layer-wise approach is used to combine unsupervised and su-
pervised STDP learning and train a multilayer SNN on MNIST
dataset. It achieves comparable or better accuracy for handwrit-
ten digit recognition than other existing STDP approaches with
the similar size of trainable parameters and manually labelled
features for classification. The parameter space is analyzed to
further fine-tune the network.

3. We introduce an approximation of our STDP rule named Quan-
tized 2-Power Shift (Q2PS) rule which is hardware implemen-
tation friendly. This approximation produces comparable re-
sults on the handwritten recognition to the original STDP rule.

The remainder of the paper is organized as the following. In Sec-
tion II we discuss the related work, in Section III we introduce the
proposed STDP rule and its stability, and the Quantized 2-Power
Shift STDP rule. Section IV presents the network architecture and
layer-wised learning that are used for MNIST classification. The re-
sults and the parameter space analysis are presented in Section V and
finally, is the conclusions.

II. RELATED WORKS
There are many variations of STDP learning rule. Additive

STDP [11] induces competition among inputs but require hard
weight constraints. Multiplicative STDP rules [12] are stable and
unimodal with no or weak competition between inputs. This again
requires complementary mechanisms such as rate normalization,
weight scaling [16], homeostasis [14] and activity-dependent scaling
[13]. These mechanisms add complexities either onto the neuron
model or the synapse model. In this work, we introduce a simplified
STDP rule which is stable but also develops good competition
among correlated inputs utilizing an elongated symmetric STDP
window.

The STDP rules are also used in various ways for different ap-
plications. [15] use STDP to learn intermediate features in a single
layer in a deep SNN for recognizing faces. [14] train a layer of neu-
rons on handwritten digits without supervision using STDP, label
them afterwards and then utilize the now labelled neurons firing rates
to classify the test digits. [17] also, use a similar approach. In the
work, along with learning the features without supervision, we com-
bine it with a classification layer that is trained with teacher neurons
on top of the trained features. Here we train the combination layer-
wise. [18] also adopts a “teacher signal” to train classifier neurons
for their evolving SNN using a STDP rule similar to additive STDP
with fixed minimum and maximum weights where the weights sat-
urate at whereas [19] requires multiple classifier neurons per class
for a SNN using event-driven Contrastive Divergence.

Some implementations of STDP rule is complex with several
parameters involved. [14] use presynaptic and postsynaptic traces,
weight constraints and additional factors for weight dependence,
whereas [17] use normalized weights using the weight constraints.
Because of the complexity in the STDP rules and complementary
mechanisms in the neuron models, implementing them in hardware
becomes expensive. Thus, in this work, we reduce the STP rule to
the bare bones to simplify it and then further propose Quantized 2-

power shift rule which is neuromorphic hardware implementation
friendly.

III. SIMPLIFIED BAYESIAN NEURON AND STDP RULES
In this section, we describe the neuron and the synapse model

and discuss the simplifications that allows for an efficient implemen-
tation. We also discuss the network architecture for the MNIST digit
pattern recognition and the methods used for its implementation.

A. Neuron Model

We utilize the generic Bayesian neuron model proposed in [20]

as the starting point and simplify the overall computation model as
mentioned in [21]. For this model, we propose a stable and simpli-
fied STDP rule for efficient online learning. Bayesian model has two
computational stages as compared to the regular integrate and fire
neuron. The first being the exponential function and the other being
the Poisson firing. In the generic neuron model as shown in Fig. 1,
the membrane potential of neuron Z is computed as

 (1)

where is the weight of the synapse connecting to its ith
presynaptic neuron , is 1 if issues a spike at time , and

 models the intrinsic excitability of the neuron . The stochastic
firing model for , in which the firing probability depends
exponentially on the membrane potential, is expressed as

(2)
In (1), small variations of resulting from the synaptic

weight changes will have an exponential impact on the firing
probability, which is not desirable. A range mapping function is pro-
posed as detailed in [22] to mitigate this effect. But this introduces
additional complexities.

Since the probability of the Bayesian neuron’s output firing rate
has an exponential dependence on the membrane potential, the com-
putation must be limited to a small region of the exponential curve.
This keeps the neuron computation within its dynamic range, else it
will saturate quickly or the firing probability builds up extremely
slowly. This small region of exponential curve can be safely approx-
imated with a linear equation. However, the accumulation of
weighted spikes approximates a linear function therefore a good dy-
namic range can be achieved.

For a Bayesian neuron output firing pattern resembles a Poisson
process. To model this, we randomly vary the threshold after every
spike generation. By limiting the range of threshold change to a
small interval which satisfies the exponential distribution with unit
rate, we achieve a firing pattern which is similar to Poisson spiking
behavior as described in the model. With these simplifications and
approximations, we can replace the Bayesian neuron model with an
Integrate and Fire neuron with stochastic threshold model. The gen-
eral behavior of neuron is still similar to the Bayesian neuron model
even with these simplifications. Now the membrane potential

of neuron Z is computed as

Fig. 1. Generic neuron model

2000

 (3)
The neuron Z spikes when the membrane potential crosses the

threshold and is set to 0 (reset potential).

B. Stable STDP Rule
STDP forms the basis for learning in our synapse model . We

use a multiplicative STDP rule where the amount of weight increase
scales inversely with present weight size. Thus, learning is inherently
stable and robust producing a unimodal weight distribution. But it
lacks synaptic competition which is an attractive feature which ena-
bles learning discriminative features in the input. In sharp contrast,
in additive STDP the weight change is independent of the current
weight producing a bimodal distribution of weights and strong com-
petition. But without any hard weight constraints, the learning is
fragile and unstable.

We model our multiplicative STDP rule such that weight change
of a synapse has an exponential dependence on its current weight as
shown in Fig. 2(a). Thus, in the text we refer to this rule as the Exp
rule. Update for the weight of ith synapse of the neuron Z from (3)
is calculated as below.

If
then, (4)

If
then, (5)

Where are the time steps at which the pre and
post-synaptic neuron spikes, are the LTP and LTD
window and and are the LTP and LTD learning rates re-
spectively. The intrinsic excitability of neuron Z from (3) is po-
tentiated when neuron Z fires and depressed when it doesn’t fire with
the same exponential weight dependency as for the synaptic weights.
These updates are linearly added to their current counterpart.

Plasticity is implemented with LTP and LTD windows as shown
in Fig. 2 (b): when a postsynaptic spike occurs after a presynaptic
spike and is within the LTP window, the synapse is potentiated ac-
cording to (4). We assume all the STDP events to be independent
such that only the first postsynaptic spike causes potentiation on that
synapse even when the subsequent postsynaptic spikes are within the
LTP window. If the postsynaptic spike falls outside the LTP window
or there is no presynaptic spike, then the synapse is depressed as per
(5). And similarly, only the first presynaptic spike within the LTD
window after a given spike depresses the synapse; subsequent pre-
synaptic spikes do not depress the synapse further before another
postsynaptic spike occurs. Whereas a presynaptic spike outside the
LTD window neither potentiate nor depress the synapse.

Ubiquity and fidelity of STDP as a general learning rule [23] [24]
has regularly been in question despite it being biologically realistic.
Phenomenological STDP rules that have simple biological
precedence such as rate-based and spike-timing based models, are
inherently unstable [13]. For proper utilization, they demand com-
plementary mechanisms. Biologically-inspired mechanisms and ad-
hoc mechanisms such as weight constraints, weight normalization
[16], firing rate normalization and homeostasis [14] are usually used.
These add computational complexity when simplicity is necessary
especially for an efficient and large-scale implementation.

The above mentioned complementary mechanisms are not re-
quired for our STDP rule presented in (4) and (5) as it is inherent
stable. The stability of a STDP rule can be shown with three main
properties [25] [26]: (a) shape of the weight distribution is stable over
time such that even if the synaptic weights change, the distribution
follow similar pattern, (b) unimodal distribution such that all the
weights are not concentrated at the boundaries and (c) limited
weights without hard weight constraints such that no synaptic
weights explode. We check our STDP rule for these properties
through simulations to verify its stability empirically.

 (a) (c) (e)

 (b) (d) (f)
Fig. 2.(a) Current weight vs Weight change for learning rates (b) STDP windows (c) Stable unimodal distribution over period of learning (20, 60 and 100% of final

distribution) (d) Convergence of mean absolute weight change (e) Bimodal distribution over period of learning (f) Learnt weights for pixel intensities

2001

Fig. 2 (c) shows the distribution of synaptic weight during dif-
ferent learning stages when the input to the network with one SIF
neuron and 28x28 input neurons is random and uncorrelated, and the
synapse is updated through our STDP rule. Pertaining to the proper-
ties of a stable STDP rule. Fig. 2 (c) shows that our method resonates
those properties very closely. The distribution achieved is unimodal,
and its shape is stable over the period of learning. And the weights
are naturally constrained between soft limits imposed by the formu-
lation of the rule itself and not with any complimentary mechanism.
Fig. 2 (a) shows that the weight updates are exponentially propor-
tional to the current weights during both LTP and LTD; If the current
weight is highly positive, then it is penalized with a lower weight
update for LTP case (larger weight update for LTD case). On the
contrary if the current weight is highly negative, then larger weight
update is produced for LTP case (lower weight update for LTD
case). Because of this weight dependence, strong synapses experi-
ence a net depression, whereas weak synapses experience a net po-
tentiation whose magnitudes are controlled separately through sepa-
rate learning rates for LTP and LTD in our STDP rule. This net de-
pression and potentiation confines the synaptic weights and stabi-
lizes the weight distribution. As the mean absolute weight change
converges asymptotically, distribution reaches an equilibrium and
becomes stationary. We can see that in Fig. 2 (c) where the change
in weight distribution decreases and becomes stationary as the mean
absolute weight change shown in Fig. 2 (d) converges and remains
in that equilibrium.

Usually in weight-dependent STDP models, there is a lack of
competition [13]. Competition between inputs allows for a specific
set of input synapses to drive a neuron into firing. This is important
for discriminative applications. In STDP models in which potentia-
tion and depression are independent of the synaptic weight, there is
strong competition [12] [27]. In these models of constrained plastic-
ity, the potentiation mainly occurs if the input has caused the spike.
When one input starts driving the postsynaptic spikes and its weight
increases, the other inputs will become less correlated with the
postsynaptic spikes, and these inputs will effectively be depressed.
This pushes the distribution of the weights towards the applied hard
constraints forming a bimodal distribution.

To replicate such competitive behavior amongst the inputs and
still maintain a stable distribution, [13] utilizes Activity-dependent
scaling of the synaptic weights. Activity-dependent scaling is a ho-
meostatic mechanism in which the neuron reacts to changes in the
postsynaptic activity, scales all synapses to keep the activity of the
neuron within bounds. The scaling is multiplicative. If one synapse
is potentiated, the postsynaptic activity rises, and the activity-de-
pendent scaling kicks in to reduce all the synaptic weights. The shape
and stability of the weight distribution are not affected by the scaling.

In our STDP model, behavior similar to activity-dependent scal-
ing is induced through the elongated symmetric STDP window used
as shown in Fig. 2 (b). LTD not only happens when the presynaptic
spike falls in the LTD window but also when the postsynaptic spike
falls outside LTP window or there is no presynaptic spike at all. So,
when a certain synapse is potentiated due to strong correlation, syn-
apses with weak correlation are depressed along with synapses with
no correlation. This induces good competition and learns discrimi-
native separation even between correlated inputs. When trained on
a MNIST image, this induces good competition producing a distri-
bution similar to that of the input or a bimodal distribution with
sparse strong synapses and dense weak or silent synapses [28] as
seen in Fig. 2 (e). And Fig. 2 (f) shows that higher pixel intensities
induce higher weights whereas lower pixel intensities induce lower
to negative weights in corresponding synapses driving weights to

clusters in opposite ends reiterating the sharpness of the discrimina-
tive ability.

One important feature of the Bayesian neuron model is that it
allows for neural sampling [20] such that the weight of the synapse
is the log conditional probability of pre-synaptic neuron firing given
the post-synaptic neuron has fired with a log constant (

) and each spike is a sample of the posterior dis-
tribution. This allows for Bayesian inference. Using an exponential
dependence of weight update on the current weight allows to retain
the log conditional property as shown empirically by the correlation
graph in Fig. 3. As the theoretical results remain true [20] for any

, we choose . Under this condition the correlation co-
efficient of the synaptic weight and the log conditional probability

 is 0.9885. This also accounts for
learnt weights being positive and negative.

C. Quantized 2-Power Shift Rule
In terms of computation, the proposed STDP rule requires an ex-

ponential and a multiplication operation for both LTP and LTD for
each synapse. From the perspective of efficient digital hardware
implementation these are expensive operations in terms of circuit
area and computation time as explained in [29].Thus, substituting
these with simplified operations is highly desirable. In the next, we
introduce a Quantized 2-power shift rule (Q2PS), which approxi-
mates our STDP rule in (4) by removing both multiplication and ex-
ponential. The approximation is summarized in (6) and (7).

If

 (6)

where .

Similarly, If

 (7)

where .
We denote for LTP and for LTD, also
let be the quantization of through priority encoding. This en-
coding converts the binary representation of into a new binary rep-
resentation with the index of the most significant active input bit as
the highest priority. For example, if then its binary repre-
sentation is 1100. The priority encoding of this is 1000 hence

. After the quantization, the change of the synaptic weight is calcu-
lated by shifting the value 1 by , either left of right, based on the
sign of that result. In other words, for both cases

 (8)

Fig. 3. Correlation graph between synaptic weight and log conditional

probability with constant c=30

2002

where and represent binary shift left and shift right opera-
tions respectively. This approximation allows implementation of the
STDP rule presented in (4) and (5) on digital hardware by using a
priority encoder, negligibly small lookup to determine from the
encoded value, barrel shifter and an adder circuit. Please note that,
based on (6) and (7), should be calculated as , which can be
obtained by shifting value 1 by Q. We refer to this as 2P
approximation. However, because the value of has much coarser
resolution than Q, the implementation of Q2PS approximation is
much simpler than the 2P approximation. We refer to the original
STDP rule in (4) and (5) as Exp rule. Fig. 4 compares the
calculated using the Exp, 2P and Q2PS rules, with a learning rate of
0.08 for all the cases. As we can see, the Q2PS rule provides multi-
level quantization, which enables similar quality of trained weights
even with approximations when compared to Exp rule. This way we
can perform online learning in a quick and efficient manner from the
hardware perspective with a smaller footprint in terms of circuit area
and energy consumption.

IV. EXPERIMENTS
We build a spiking neural network to classify MNIST [30] hand-

written digits and perform analysis of our proposed STDP learning
rules. Both supervised learning and unsupervised learning for train-
ing the entire network including the classifier layer is discussed. We
use a SNN simulator SpNSim [22] to simulate all the experiments
presented in the paper. SpNSim is a multithreaded and scalable sim-
ulation platform built using C++. It is flexible and vectorized for ef-
ficient evaluation and capable of handling large-scale networks of
mixed neuron models.

A. Network Architecture
We create a 3-layer network as shown in Fig. 5. The input layer

contains 28x28 neurons (one per pixel), the second layer has variable
number of stochastic integrate and fire (SIF) neurons for different
trials (the hidden layer), and the third layer is the classification layer
with 10 SIF neurons (one per class). The input is fed to the input
layer which encodes the pixel intensities with 0 Hz – 300 Hz firing
rates and the classification result is obtained from the classification
layer. Input layer is fully connected to the hidden layer, and hidden
layer to the classification layer and all these synapses are plastic.

Along with the SIF neurons, hidden and the classification layer
neurons there are supporting ReLU neurons [22] for lateral inhibi-
tion. At both layers, the ReLU neurons (inhibitory) form WTA
(Winner Take All) circuits with a connectivity as mentioned in [22];
one-to-one connection from SIF neurons to the ReLU neurons and
the ReLU neurons are connected to all the SIF neurons except for
the one from which it receives a connection. Hard or soft WTA
behavior can be achieved based on the degree of inhibition delivered.
Hard WTA happens when the inhibition is strong such that it brings
down the firing rate of the non-preferred SIF neurons to zero,

resulting in only one neuron with highest excitation being active. On
the other hand, if plural voting action is required within the set, the
degree of inhibition is tuned to be moderate. This makes SIF neurons
fire with different stable rates which is, soft WTA behavior where
firing rate is proportional to their relative excitation levels.

The hidden layer learns features of the MNIST images and more
than one neurons could learn feature concerning a certain class, thus
requiring multiple neurons in the layer to be firing. Thus, the hidden
layer is set to a soft WTA inhibition level. Whereas in the classifica-
tion layer, a neuron is associated with a class in a one-to-one basis
thus requiring only one neuron to fire in a period. Hence the classifi-
cation layer is set to a hard WTA inhibition level. And these synap-
ses are not plastic.

The stochasticity of the SIF neuron is important during learning
to allow the neurons in both layers learn unique features. But having
similar stochasticity during recall becomes counterproductive as in-
appropriate inputs could excite a certain feature in the hidden layer,
and similarly incorrect feature could excite an incorrect neuron in the
classification layer producing an incorrect classification. Thus, dur-
ing the recall phase, we disable learning and fix each neuron’s spik-
ing threshold to make them deterministic.

B. Learning
Using our STDP rule, we perform both unsupervised and super-

vised learning. STDP is known to have the effect of concentrating
high synaptic weights on afferents that systematically fire early. It
makes neurons naturally selective to patterns that are reliably present
in the input. These patterns are learnt without supervision and can be
used for categorization and discrimination. In this way, the hidden
layer learns patterns from the input layer as shown in Fig. 5.

For classification purposes, supervision is necessary to label the
neurons that have learnt discriminative capabilities thus categoriza-
tion is in order during recall. In [14], the feature learning neurons are
manually labeled after training and their collective firing rate are
used to classify digits. This methodology creates issues in cases
when the learnt feature is not of a distinguishable class or it is com-
mon to several classes e.g. slanted “1” is a sub feature of “7”, “3” has
feature elements common to “5” and “8” and so on. Thus, labeling
these features to one class or the other could lead to mislabeling of
undistinguished features or underutilization of a common feature. To
avoid such situations, we add a classification layer which learns in-
termediate features from all the available learnt features in the hidden
layer without having to manually label them. The classification layer
has one neuron per class to perform categorization such that the neu-
ron with the highest firing rate is the predicted class. And to train the
classification layer, we introduce a supervised learning approach us-
ing our STDP rule on top of the already trained hidden layer.

During supervised training in ANN, the neurons in the classifi-
cation layer are driven by the class labels and the error is propagated
down the network layers. Here we add a neuron per class which fires
at a specific rate based on the class being observed. We call this
Teacher neuron. These neurons are connected one-to-one to the clas-
sification layer as shown in Fig. 5. They excite one neuron per class
to fire at a specific rate when the label is presented. The teacher neu-
rons to classification layer neuron synapses are not learnt. However,
it excites the connected classification neuron and creates differentia-
ble time dependent relations between the classification layer and the
hidden layer. Based on our STDP rule, active input synapses from
the classification layer to the hidden layer are potentiated and inac-
tive ones are depressed, thus propagating the error down through the
incoming synapses

Fig. 4. Comparison of the introduced STDP rules

2003

V. RESULTS AND DISCUSSIONS
In this section, we present the results on the handwritten digits

classification. We also analyze the performance for different sets of
parameters to present rationale on how to tune the network, and what
could be adapted in case of noise and variable intensities in input
images. Finally, we discuss the quality of the features learnt.

A. Handwritten Digits Classification
We trained a 3-layer network as presented in section IV with 10

classification neurons and with 3 variations of hidden layers consist-
ing of 100, 400 and 1600 neurons. The training is done layer-wise;
the input to hidden layer synapses are trained without supervision by
presenting the complete training set once, and then the hidden to
classification layer synapses are trained with supervision on top of
the trained hidden layer by presenting the complete training set
again. Each input neuron is connected to one pixel in the image and
fires at a rate (maximum rate is 300Hz) that is proportional to the
pixel intensity. No preprocessing is done on the images and we pre-
sent each training image for 200 time steps during training. The
learnt features and hidden to classification layer synaptic weights are
shown visualized in Fig. 5. The same parameters are used through-
out all these experiments.

Fig. 5 also shows the t-SNE [31] visualizations for the input layer
and the hidden layer which provides a qualitative analysis. This tech-
nique performs t-distributed stochastic neighbor embedding which
maps high-dimensional data that lie on several different, but related,
low-dimensional manifolds to lower dimensions by capturing local
structure of the high-dimensional data. In our case 784 dimensions
of input layer and 100 dimensions of feature layer are mapped to 2
dimensions respectively. These visualizations are made using the fir-
ing rates of all the neurons in that layer. It is clear from the figure that
the proposed STDP rule can form tight clustering of input space
when mapping it into the feature space. This generates features that
can be more easily classified by the classification layer.

The three networks; 100, 400 and 1600 hidden neurons,
achieved an average classification accuracy of 85, 87.4 and 89.7%
for our STDP rule, respectively, as shown in Fig. 6. We achieve bet-
ter classification accuracy for networks with 100 and 400 hidden
neurons compared to [14] for their respective network sizes, whereas
for 1600 hidden neurons our results are slightly lower. This lower

accuracy for high number of hidden neurons can be attributed to
overfitting due to large number of trainable parameters per neuron
for the classification layer. [14] don’t face this issue as they manually
labelled the features for classification instead of classification layer
trained on top of those learnt features. We could resolve this issue in
the future by using dropout while training. The accuracies of 2P and
Q2PS STDP rules for these networks are also shown in Fig. 6. As
can be seen from the results, even with approximations and quanti-
zation, the Q2PS rule achieves accuracies reasonably close to the
Exp STDP rule.

B. Sensitivity Analysis
Even with a simplified STDP rule and SIF neuron model, several

parameters involved during learning and recall. As the networks are
stochastic and no mathematical measures are present to pinpoint
these parameters, it is important to empirically fine-tune them. This
step is analogous to the process of selecting the hyper-parameters
such as learning rate, momentums, etc., for a conventional artificial
neural network. The empirical exploration of the parameter space
was done for individual parameters within a sensible range through
multi-model simulations on SpNSim to achieve optimal parameters
used for all training and testing. This approach is similar to grid
search. To show these parameter’s impact on the quality of learning,
we present each parameter’s sensitivity relative to the optimal pa-
rameters in separate sensitivity graphs for training and testing param-
eters in Fig. 7 using the 3-layer MNIST classification SNN with 100
hidden neurons as an example. The rationales on how to configure
those parameters and their specific sensitivity are also discussed.

1) Training parameters: STDP windows ,
learning rates and the training period for each input
image are the important parameters during the training. Learning
rates control the step size of weight updates. Larger step size leads to
faster learning but also faster forgetting of the learnt features . Hence
can result in overfitting of features. Given a training period, if the
learning rates of LTP and LTD are equal and small (~10-3), it learns
and retains features without overfitting. In Fig. 7 (a), while increas-
ing the learning rates, the performance increases, peaks at a certain
rate and then start decreasing because of overfitted features. The
quality of the learnt features on that peak learning rate value is dis-
cussed in Section V.E. Having higher LTP window allows more
opportunities for potentiation. As our STDP rule is setup for
competition among inputs, lower LTP window leads to high net
depression. Thus we set the LTP window (50 time steps) higher than
the LTD window (10 time steps). The LTP window determines how
strongly correlated the input must be to be potentiated whereas the
LTD window determines how strongly uncorrelated the input must
be to be depressed. As discriminative features are present in corre-
lated inputs, the impact of LTP window is more which is visible in
Fig. 7 (a). The training period per image is set such that weight
updates with small step sizes have enough time to capture features

Fig. 5. Network architecture showing the connectivity, input, learnt features
by hidden and classification layer, the labels and t-SNE visualizations

Fig. 6. Test accuracies for different sized networks

2004

from an input. In Fig. 7 (a), we also see that at training period of 200
time steps, the performance saturates.

2) Testing parameters: Hidden and classification layer neuron
thresholds and the computation period for each image are parameters
during the testing. Decreasing and increasing threshold increases and
decreases the firing rates respectively. Lower thresholds make the
neurons extremely sensitive thus may allow unnecessary
features/classifier neuron to also fire whereas very high thresholds
might mean less sensitivity such that even a favorable
feature/classifier neuron may not be able to gather enough excitation
to fire in the testing period. As the hidden layer is exposed to the
input, high sensitivity of a neuron in that layer is exploited by simi-
larity between different inputs. Thus in Fig. 7 (b) we see a sudden
drop in the performance with decrease in hidden layer threshold
whereas only a small drop for decrease in classification layer thresh-
old. Lower computation period decreases the latency from input to a
classification result but leads to less time to resolve the result. Higher
computation period increases the latency but allows for enough time
to resolve the results as the inputs are rate coded. So, we use a com-
putation period where the accuracy starts saturating as seen in Fig. 7
(b).

C. Classifying Images with White Noise
Background clutter is a common form of noise which reduces

the effective contrast in a real-world image inputs. This reduces the
discriminative properties between images. To test the resilience of
our network at different levels of background clutter, we create arti-
ficial MNIST test sets with Additive White Gaussian Noise
(AWGN) of different SNRs (15, 20 and 25). The results are shown
in TABLE I.

TABLE I. PERFORMANCE WITH AND WITHOUT ADAPTION IN PRESENCE OF
AWGN NOISE

AWGN noise SNR Without adaptation With adaptation
15 19.1% 34.5%
20 40.9% 83.9%
25 78.6% 85%

With the current temporal sparseness (maximum rate 300 Hz)
for encoding the input, the AWGN noise has a significant impact on
the accuracy. In biology, the LGN neuron in the early visual pathway
employs an adaptive strategy [32] which decreases the temporal
sparseness (increasing the firing rate) and shifts stimulus–response
curves toward higher stimulus intensities when the effective contrast
is reduced due to white noise. This reduces the spike-timing jitters
induced by lower effective contrast by increasing the level of dis-
crimination (in terms of firing rate) between similar stimuli and ig-
nores low intensity stimuli in the background. We apply a similar
adaptation strategy to deal with the AWGN noise. As shown in Fig.
8, we shift the intensity-firing rate (stimulus-response) curve towards
higher intensities and increase the range of the firing rate to 600 Hz.
This leads to a dramatic improvement in accuracy in the presence of

AWGN noise. But this comes with the decrease in sparsity and re-
duction in sensitivity to lower intensity discriminative properties.

D. Classifying Images with Variable Intensity
Resistance to variation in the image is important. The most com-

mon variation is the intensity of the image. In real life, lighting
conditions result in different intensity images. Thus, we create artifi-
cial MNIST test sets with 25% intensity, 50% intensity and mixed
intensity to test our network on. The results are shown in TABLE II.

This leads into the discussion of when normalization becomes
useful in our network. Normalization mechanisms allow for intrinsic
modulation of the firing rates of the neurons in a layer; increase if the
rate is low, and decrease if the rate is high. Thus, keeping all the neu-
rons approximately within a range of firing rates. With low intensity
images, there can be a propensity of a lack of excitation for the neu-
rons in the hidden layer to fire and thus for the classification layer.
This negatively impacts the classification layer’s ability to accurately
categorize the image’s class.

Normalization mechanisms such as homeostasis [14] and weight
normalization or scaling [6] [33] add complexities onto the neuron
model and the learning rule. With our aim of simplicity, we utilize
the normalized winner-take-all (NWTA) mechanism as described in
[21]. It adds three additional neurons in the hidden layer; upper lim-
iter (UL), lower limiter (LL), and exciter (Ex), which checks if the
upper limit of the desired firing rate range is reached and increases
lateral inhibition, checks if the lower limit of the desired firing rate is
reached and provides additional excitation, respectively. We incor-
porate NWTA in the hidden layer as low intensity image directly
impacts its firing rates. The results with and without NWTA mech-
anism is shown in TABLE II. for a network with 100 neurons in the
hidden layer averaged over three experiments.

TABLE II. PERFORMANCE WITH AND WITHOUT NWTA FOR DIFFERENT
INTENSITY MNIST IMAGES

Intensity level Without NWTA With NWTA
25% 62.9% 79.7%
50% 81.5% 84.1%
100% 85% 84.9%
Mixed 82.7% 84.4%

From TABLE II, we can see that normalization results in im-
provement for lower intensity images whereas for normal intensity
images normalization is redundant as the network was trained using
normal intensity images.

E. Quality of the learnt features
During unsupervised learning, neurons in the hidden layer get

associated with a class without supervision and learn common
patterns of that class. These features, along with being
discriminative, should also encapsulate variations of the associated
class as well.

 (a) (b)

Fig. 7. Sensitivity of recognition accuracy for % change in (a) training and (b) testing
parameters from the optimal parameters. Only one parameter is varied at a time from base

values for 100 hidden neuron network

Fig. 8. Firing rate curve with and without adaptation for

different pixel intensities

2005

For example, a color map of two features of class “1” is shown
in Fig. 9. The feature in Fig. 9 (b) is overfit to a particular variation
of “1” in the MNIST training set. It will not contribute to or will neg-
atively impact the classification when a different variation of “1” is
presented, because it can lead to a lack of excitation for the neurons
in the hidden layer to fire. Whereas in Fig. 9 (a) the feature has a
strict core of “1” but a fuzziness around it such that the feature con-
tributes to the classification of different variation of “1”. That fuzzi-
ness could be considered as the remnant of the other 1’s that the neu-
ron has been exposed to. When we keep the learning rates low and
equal for LTP and LTD (10-3), and increase the length of the LTP
window (50 time steps) as compared to the LTD window (10 time
steps), it provides the neuron more opportunities to learn other vari-
ations of “1” and only allows it to forget them slowly. Hence, leaving
the fuzzy remnant.

VI. CONCLUSION
In this paper, we presented a simplified neuron model and

introduced a stable and competition inducing STDP learning rule.
With simplicity in terms of computation and hardware
implementation being a motivating factor we also introduced Q2PS
rule which can be implemented with minimal digital hardware
resources. We also combined unsupervised and supervised learning
with STDP using a layer-wise training approach, applied the
network for handwritten digit classification with competitive results
and provided analysis for parameter tuning.

References
[1] F. Javed, Q. He, L. E. Davidson, J. C. Thornton, J. Albu, L. Boxt, N. Krasnow,

M. Elia, P. Kang, S. Heshka and others, "Brain and high metabolic rate organ
mass: contributions to resting energy expenditure beyond fat-free mass," The
American journal of clinical nutrition, vol. 91, pp. 907-912, 2010.

[2] R. Ananthanarayanan, S. K. Esser, H. D. Simon and D. S. Modha, "The cat is
out of the bag: cortical simulations with 109 neurons, 1013 synapses," in
Proceedings of the Conference on High Performance Computing Networking,
Storage and Analysis, 2009.

[3] W. Maass, "Networks of spiking neurons: the third generation of neural network
models," Neural networks, vol. 10, pp. 1659-1671, 1997.

[4] H. Z. Shouval, M. F. Bear and L. N. Cooper, "A unified model of NMDA
receptor-dependent bidirectional synaptic plasticity," Proceedings of the
National Academy of Sciences, vol. 99, pp. 10831-10836, 2002.

[5] G. C. Castellani, E. M. Quinlan, F. Bersani, L. N. Cooper and H. Z. Shouval, "A
model of bidirectional synaptic plasticity: from signaling network to channel
conductance," Learning \& Memory, vol. 12, pp. 423-432, 2005.

[6] P. U. Diehl, D. Neil, J. Binas, M. Cook, S.-C. Liu and M. Pfeiffer, "Fast-
classifying, high-accuracy spiking deep networks through weight and threshold
balancing," in 2015 International Joint Conference on Neural Networks
(IJCNN), 2015.

[7] P. O’Connor, D. Neil, S.-C. Liu, T. Delbruck and M. Pfeiffer, "Real-time
classification and sensor fusion with a spiking deep belief network,"
Neuromorphic Engineering Systems and Applications, p. 61, 2015.

[8] W. Gerstner and W. M. Kistler, Spiking neuron models: Single neurons,
populations, plasticity, Cambridge university press, 2002.

[9] R. Kempter, W. Gerstner and V. a. L. J. Hemmen, "Hebbian learning and spiking

neurons," Physical Review E, vol. 59, p. 4498, 1999.
[10] S. Song, K. D. Miller and L. F. Abbott, "Competitive Hebbian learning through

spike-timing-dependent synaptic plasticity," Nature neuroscience, vol. 3, pp.
919-926, 2000.

[11] S. Sengupta, K. S. Gurumoorthy and A. Banerjee, "Sensitivity Analysis for
additive STDP rule," arXiv preprint arXiv:1503.07490, 2015.

[12] M. Gilson and T. Fukai, "Stability versus neuronal specialization for STDP:
long-tail weight distributions solve the dilemma," PloS one, vol. 6, p. e25339,
2011.

[13] V. a. M. C. W. Rossum, G. Q. Bi and G. G. Turrigiano, "Stable Hebbian learning
from spike timing-dependent plasticity," The Journal of Neuroscience, vol. 20,
pp. 8812-8821, 2000.

[14] P. U. Diehl and M. Cook, "Unsupervised learning of digit recognition using
spike-timing-dependent plasticity," Frontiers in computational neuroscience,
vol. 9, 2015.

[15] T. Masquelier and S. J. Thorpe, "Unsupervised learning of visual features
through spike timing dependent plasticity," PLoS Comput Biol, vol. 3, p. e31,
2007.

[16] N. Levy, D. Horn, I. Meilijson and E. Ruppin, "Distributed synchrony in a cell
assembly of spiking neurons," Neural networks, vol. 14, pp. 815-824, 2001.

[17] D. Querlioz, O. Bichler and C. Gamrat, "Simulation of a memristor-based
spiking neural network immune to device variations," in Neural Networks
(IJCNN), The 2011 International Joint Conference on, 2011.

[18] N. Kasabov, K. Dhoble, N. Nuntalid and G. Indiveri, "Dynamic evolving spiking
neural networks for on-line spatio-and spectro-temporal pattern recognition,"
Neural Networks, vol. 41, pp. 188-201, 2013.

[19] E. Neftci, S. Das, B. Pedroni, K. Kreutz-Delgado and G. Cauwenberghs, "Event-
driven contrastive divergence for spiking neuromorphic systems," 2013.

[20] B. Nessler, M. Pfeiffer, L. Buesing and W. Maass, "Bayesian computation
emerges in generic cortical microcircuits through spike-timing-dependent
plasticity," PLoS Comput Biol, vol. 9, p. e1003037, 2013.

[21] K. Ahmed, A. Shrestha, Q. Qiu and Q. Wu, "Probabilistic inference using
stochastic spiking neural networks on a neurosynaptic processor," in Neural
Networks (IJCNN), 2016 International Joint Conference on, 2016.

[22] K. Ahmed, A. Shrestha and Q. Qiu, "Simulation of bayesian learning and
inference on distributed stochastic spiking neural networks," in Neural Networks
(IJCNN), 2016 International Joint Conference on, 2016.

[23] L. F. Abbott and S. B. Nelson, "Synaptic plasticity: taming the beast," Nature
neuroscience, vol. 3, pp. 1178-1183, 2000.

[24] J. Lisman and N. Spruston, "Questions about STDP as a general model of
synaptic plasticity," Spike-timing dependent plasticity, vol. 26, p. 53, 2010.

[25] F. S. Matias, P. V. Carelli, C. R. Mirasso and M. Copelli, "Self-organized near-
zero-lag synchronization induced by spike-timing dependent plasticity in cortical
populations," PloS one, vol. 10, p. e0140504, 2015.

[26] K. S. Burbank and G. Kreiman, "Depression-biased reverse plasticity rule is
required for stable learning at top-down connections," PLOS Comput Biol, vol.
8, p. e1002393, 2012.

[27] J. T. A. Kepecs, "Why neuronal dynamics should control synaptic learning
rules," in Advances in Neural Information Processing Systems 14: Proceedings
of the 2001 Neural Information Processing Systems (NIPS) Conference, 2002.

[28] J.-n. Teramae and T. Fukai, "Computational implications of lognormally
distributed synaptic weights," Proceedings of the IEEE, vol. 102, pp. 500-512,
2014.

[29] K. Ahmed, A. Shrestha, Y. Wang and Q. Qiu, "System Design for In-Hardware
STDP Learning and Spiking Based Probablistic Inference," in VLSI (ISVLSI),
2016 IEEE Computer Society Annual Symposium on, 2016.

[30] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based learning
applied to document recognition," Proceedings of the IEEE, vol. 86, pp. 2278-
2324, 1998.

[31] L. v. d. Maaten and G. Hinton, "Visualizing data using t-SNE," Journal of
Machine Learning Research, vol. 9, pp. 2579-2605, 2008.

[32] N. A. Lesica, J. Jin, C. Weng, C.-I. Yeh, D. A. Butts, G. B. Stanley and J.-M.
Alonso, "Adaptation to stimulus contrast and correlations during natural visual
stimulation," Neuron, vol. 55, pp. 479-491, 2007.

[33] S. Afshar, L. George, C. S. Thakur, J. Tapson, A. van Schaik, P. de Chazal and
T. J. Hamilton, "Turn Down That Noise: Synaptic Encoding of Afferent SNR in
a Single Spiking Neuron," IEEE transactions on biomedical circuits and
systems, vol. 9, pp. 188-196, 2015.

 (a) (b)

Fig. 9. Example of (a) non-overfit feature and (b) overfit feature

2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

