
Towards Acceleration of Deep Convolutional Neural
Networks using Stochastic Computing

Ji Li1, Ao Ren2, Zhe Li2, Caiwen Ding2, Bo Yuan3, Qinru Qiu2 and Yanzhi Wang2

1Department of Electrical Engineering, University of Southern California, Los Angeles, CA, USA
2College of Engineering and Computer Science, Syracuse University, Syracuse, NY, USA

3Department of Electrical Engineering, City University of New York, NY, USA
jli724@usc.edu, {aren,zli89,cading}@syr.edu, byuan@ccny.cuny.edu, {qiqiu,ywang393}@syr.edu

Abstract—In recent years, Deep Convolutional Neural Network
(DCNN) has become the dominant approach for almost all
recognition and detection tasks and outperformed humans on
certain tasks. Nevertheless, the high power consumptions and
complex topologies have hindered the widespread deployment of
DCNNs, particularly in wearable devices and embedded systems
with limited area and power budget. This paper presents a
fully parallel and scalable hardware-based DCNN design using
Stochastic Computing (SC), which leverages the energy-accuracy
trade-off through optimizing SC components in different layers.
We first conduct a detailed investigation of the Approximate
Parallel Counter (APC) based neuron and multiplexer-based
neuron using SC, and analyze the impacts of various design
parameters, such as bit stream length and input number, on the
energy/power/area/accuracy of the neuron cell. Then, from an
architecture perspective, the influence of inaccuracy of neurons
in different layers on the overall DCNN accuracy (i.e., software
accuracy of the entire DCNN) is studied. Accordingly, a structure
optimization method is proposed for a general DCNN archi-
tecture, in which neurons in different layers are implemented
with optimized SC components, so as to reduce the area, power,
and energy of the DCNN while maintaining the overall network
performance in terms of accuracy. Experimental results show
that the proposed approach can find a satisfactory DCNN
configuration, which achieves 55X, 151X, and 2X improvement
in terms of area, power and energy, respectively, while the error
is increased by 2.86%, compared with the conventional binary
ASIC implementation.

I. INTRODUCTION

Machine learning technology is increasingly present in the
Internet and consumer products, and it powers many funda-
mental applications such as speech-to-text transcription, selec-
tion of relevant search results, natural language processing, and
objects identification in images or videos [1], [2]. Conventional
machine learning techniques are limited in its ability to process
data in their raw form (e.g., the pixel values of an image)
[2]. As a result, considerable human engineering efforts and
domain expertise are required to transform raw data into
suitable internal representations that can be understood and
processed by the learning system [2]. With the fast growing
amount of data and range of applications to machine learning
methods, the ability to automatically extract powerful features
is becoming increasingly important [1].

Many representation learning methods have been proposed
to automatically learn and organize the discriminative infor-
mation from raw data [2]. Deep learning is one of the most
promising representation learning methods, which enables a
system to extract representations automatically at multiple
levels of abstraction and learn complex functions directly from
data with very little engineering by hand [1], [2]. With the
self-learning ability to configure its intricate structure, a deep

learning architecture can easily take advantage of increases in
the amount of available computation and data [2].

Recently, Deep Convolutional Neural Network (DCNN),
which is one of most widely used types of deep neural
networks, has achieved tremendous success in many machine
learning applications, such as speech recognition [3], image
classification [4], and video classification [5]. DCNN is now
the dominant approach for almost all recognition and detection
tasks and approach human performance on some tasks [2].
Nevertheless, compared with other machine learning tech-
niques, DCNNs require more computations due to the deep
layer architecture. Furthermore, the industrial and academic
demands for better quality of results also tend to increase
the depth and/or width of DCNNs [6], leading to compli-
cated topologies and increased computation resources required
for implementation. Therefore, a practical implementation of
large-scale DCNNs is to use high performance server clusters
with accelerators such as GPUs and FPGAs [7], [8]. A
notable trend is that with the astonishing advances on wearable
devices and Internet-of-Things (IoT), machine learning has
also been rapidly adopted in the widespread mobile and
embedded systems. In order to bring the success of DCNNs to
these resource constrained systems, designers must overcome
the challenges of implementing resource-hungry DCNNs in
embedded systems with limited area and power budget.

Stochastic Computing (SC), which is the paradigm of
logical computation on stochastic bit streams [9], has the
potential to enable fully parallel and scalable hardware-based
DCNNs. Since SC provides several key advantages compared
to conventional binary arithmetic, including low hardware area
cost and tolerance to soft errors [9–11], considerable research
efforts have been invested in the context of designing neural
networks using SC in recent years [12–16].

Nevertheless, there lacks a comprehensive investigation of
energy-accuracy trade-off for DCNN designs using different
SC components. In this paper, two hardware-based neuron
structures using SC are introduced, i.e., Accumulative Parallel
Counter (APC) based neuron and multiplexer (MUX) based
neuron. We further investigate the trade-off among area, power,
energy and (neuron cell) accuracy for these neuron structures
using different input sizes and stochastic bit stream lengths.
Then, from an architecture perspective, the influence of inac-
curacy of neurons in different layers on the overall DCNN ac-
curacy is studied. Based on the results, a structure optimization
method is proposed for a general DCNN architecture, in which
neurons in different layers are implemented with the optimized
SC components such that the overall DCNN area, power, and
energy consumption are minimized while the DCNN accuracy

978-1-5090-1558-0/17/$31.00 ©2017 IEEE

2S-4

115

is preserved.
The contributions of this work are threefold. First, we

introduce SC into the DCNNs, in order to make the footprints
of DCNNs small enough for successful implementations in
today’s wearable devices and embedded systems. Second, we
carry out a detailed analysis on the energy-accuracy trade-off
for different SC-based neuron designs. Third, based on the
analysis of the results, we propose a structure optimization
method for a general DCNN architecture using SC, which
jointly optimizes the area, power, energy, and accuracy for
the entire DCNN. Experimental results on a LeNet 5 DCNN
architecture demonstrate that compared with the conventional
8-bit binary implementation, the presented hardware-based
DCNN using SC achieves 55X, 151X, and 2X improvement in
terms of area, power and energy, respectively, while the error
is increased by 2.86%.

II. RELATED WORK

DCNNs have been recognized as one of the most effective
pattern recognition techniques. In order to improve the area,
power and energy performance, many hardware-based neural
networks have come into existence. The authors in [7] pro-
posed an FPGA-based accelerator to leverage the sources of
parallelism. An efficient 3D neuron topology was developed
in [8], which improved the utilization of FPGA resources for
different convolutional layer shapes.

In addition to accelerating techniques, SC becomes a very
attractive candidate for implementing hardware-based neural
networks, since SC building blocks can greatly reduce the
hardware footprints, compared to conventional binary arith-
metic components [17]. The authors in [14] applied SC to
a radial basis function artificial neural network and signifi-
cantly reduced the required hardware. Reference work [12]
presented a neuron cell design using SC components, where
the progressive precision characteristics of SC was exploited.
Reconfigurable SC based neurons were developed in [15]. In
addition, the authors in [16] explored the hardware-oriented
pooling in DCNNs using SC. The above-mentioned works
have proposed several neural network designs using SC, in
order to satisfy the resource constraints in embedded systems
whiling meeting the specific functions and performance needs
of end users. However, there lacks a detailed investigation of
the energy-accuracy trade-offs for DCNNs using different SC
components. Moreover, within a DCNN architecture, neurons
in different layers have various connection patterns and exhibit
different degrees of influence on the overall system perfor-
mance, which indicates a structure optimization can be applied
to achieve further improvement.

III. OVERVIEW OF THE PROPOSED DCNN AND

STOCHASTIC COMPUTING

A. DCNN Architecture
In this paper, we consider a general DCNN architecture,

which consists of a stack of convolutional layers, pooling
layers, and fully connected layers. By arranging the topology
of above layers, powerful architectures (e.g., LeNet [18]) can
be built for specific applications. Without the loss of generality,
we conduct the investigation on the LeNet-5 architecture using
SC, which is comprised of two pairs of convolutional and
pooling layers, one fully connected layer, and one output layer,
as shown in Figure 1. Note that the proposed methodology can
accommodate other DCNN architectures as well.

A convolutional layer is associated with a set of learnable
filters (or kernels), which are activated when specific types
of features are found at some spatial positions in the inputs.
After obtaining features using convolution, a subsampling step
can be applied to aggregate statistics of these features to
reduce the dimensions of data and mitigate over-fitting issues.
This subsampling operation is realized by a pooling layer in
hardware-based DCNNs, where different non-linear functions
can be applied, such as max pooling, average pooling and
L2-norm pooling. The activation functions in neurons are
non-linear transformation functions, such as Rectified Linear
Units (ReLU) f(x) = max(0, x), hyperbolic tangent (tanh)
f(x) = tanh(x) or f(x) = |tanh(x)|, and sigmoid function
f(x) = 1

1+e−x . In this paper, we adopt the tanh activation
function since it can be implemented efficiently as a finite
state machine (FSM) in SC using a stochastic approximation
method. Fully connected layer is a normal neural network layer
with its inputs fully connected with its previous layer. The loss
function of DCNN that specifies how the network training
penalizes the deviation between the predicted and true labels,
and typical loss functions are softmax loss, sigmoid cross-
entropy loss or Euclidean loss.

B. Stochastic Computing
In SC, the value of a (unipolar) stochastic number is

represented by the probability of 1s in a random bit stream,
e.g., the value of a 4-bit sequence X = 0010 is x = P (X =
1) = 1

4 = 0.25. Obviously, the representation of a stochastic
number is not unique, e.g., to represent the value 0.25 using
a 4-bit stream, there are four different ways: 0001, 0010,
0100, and 1000. Besides, an m-bit sequence can only represent
numbers in the set { 0

m , 1
m , 2

m , · · · , m
m}, indicating that only a

small subset of the real numbers in the interval [0, 1] can be
expressed exactly in SC. Clearly, the precision and accuracy
of SC is dependent on the length of the stream. The two most
popular representations for stochastic numbers are unipolar
and bipolar formats, which interpret values in the intervals
[0, 1] and [−1, 1], respectively. Unipolar coding is commonly
used in unsigned arithmetic operations, whereas bipolar format
is used in signed arithmetic calculations. More specifically, in
unipolar coding, the information carried in a stochastic stream
of bits X is x = P (X = 1) = P (X), whereas in the bipolar
format, x = 2P (X = 1)− 1 = 2P (X)− 1.

The major arithmetic operations included in DCNN are
multiplication, addition, and tanh. With SC, these operations
can be implemented with extremely small circuits as follows.

1) Multiplication: Stochastic multiplication in unipolar and
bipolar is performed by an AND gate and an XNOR gate,
respectively. We denote the probabilities of 1 on the input bit
streams by P (A) and P (B), and the probability of 1 at the
output of the AND gate is P (A)× P (B), i.e., the product of
unipolar multiplication. As for the bipolar coding, the output

Convolutional
 layer

Pooling
 layer

Fully connected
 layer

Input layer

Feature maps

Output layer

Convolutional
 layer

Pooling
 layer

Fig. 1. The fifth generation of LeNet DCNN architecture.

2S-4

116

Z
A
B

A
B Z

1,1,1,1,0,0,0,0 (4/8)
(a) 1,1,0,1,1,1,1,0 (6/8) 1,1,0,1,0,0,0,0 (3/8)

(b)
1,1,0,1,0,0,1,0 (0/8)
1,0,1,1,1,1,1,0 (4/8)

1,0,0,1,0,0,1,1 (0/8)

Fig. 2. Stochastic multiplication: (a) unipolar and (b) bipolar.

of the XNOR gate is P (Z) = P (A) · P (B) + P (A) · P (B).
Therefore, the stochastic number of Z is calculated as z =
2 · P (Z)− 1 = 4 · P (A) · P (B)− 2 · P (A)− 2 · P (B) + 1 =
(2 ·P (A)− 1) · (2 ·P (B)− 1) = a× b. Note that the input bit
streams are assumed to be suitably uncorrelated or independent
in the above calculations. An example of multiplying two bit
streams A and B is illustrated in Figure 2.

2) Addition: Stochastic addition can be implemented by an
OR gate, a multiplexer (MUX), or an Accumulative Parallel
Counter (APC) [19], as illustrated in Figure 3 (a), (b), and (c),
respectively. When both inputs a and b are small, the output
of the OR gate is an approximate sum that is expressed as
z = P (Z) = P (A) + P (B) − P (A · B) ≈ a + b. A MUX
performs scaled addition by randomly selecting one input i
among n inputs with probability pi such that

∑n
i=1 pi = 1.

For example, adding a and b using MUX with p1 = p2 = 50%
generates an output z = P (Z) = 1

2 ·
(
P (A) + P (B)

)
. This

MUX can also perform scaled addition in bipolar coding, i.e.,
z = 2 · P (Z)− 1 = 1

2 ·
(
(2 · P (A)− 1) + (2 · P (B)− 1)

)
=

1
2 · (a + b). However, the MUX has the drawback of losing
n − 1 inputs information, since only one bit is selected and
the remaining n − 1 bits are ignored at a time. In order to
achieve better accuracy, APC is proposed to compute the total
number of 1s present in all the inputs using a parallel counter.
Note that the output of APC is in binary, so additional steps
may be needed to transform this. In conclusion, OR gate is the
most area efficient but the accuracy is too low to be used in
DCNN. MUX is area efficient with limited accuracy, whereas
APC achieves better accuracy at the cost of a larger footprint.

3) Hyperbolic Tangent: The hyperbolic tangent function
(i.e., tanh(·)) is implemented using a K-state FSM, as shown
in Figure 4, where half of the states generate output 0 and
the other half states generate 1. According to [20], for a given

Z
A
B

A
B

Z

1,0,1,0,0,0,0,0 (2/8)
(a) 0,1,0,0,0,1,0,1 (3/8) 1,1,1,0,0,1,0,1 (5/8)

(b)
1,0,1,0,1,1,1,1 (6/8)
1,0,0,0,0,0,1,0 (2/8)

1,0,1,0,1,0,1,0 (4/8)

1,0,0,1,0,1,0,1 (4/8) S

0
1

3
2

2
2

1
2

(c)

1
2

A0

B0

A1

B1

A2

B2

A3

B3

A4

B4

A5
B5

A6

A7
B7

FA

FA

FA

FA
B6

Fig. 3. Stochastic adders: (a) OR gate, (b) multiplexer (MUX) for scaled
addition, and (c) approximate parallel counters (APC).

X

S0 S1 SK/2-1 SK/2 SK-2 SK-1

X
_

X X X X

X
_

X
_

X
_

X
_

Z=0 Z=1

tanh(x) Z

XX
_

2
K_X

Fig. 4. Stochastic hyperbolic tangent.

bipolar stochastic number x, the result of the FSM design is
a stochastic approximation to the tanh function as follows,

Stanh(K,x) = tanh(
K · x
2

) (1)

Therefore, additional conversion steps are needed to calculate
the tanh(x). The accuracy of the K-state FSM tanh function
is determined by state number K and input stream length.

IV. HARDWARE-BASED DCNN DESIGN AND

OPTIMIZATION USING STOCHASTIC CIRCUITS

In this section, we first conduct a detailed investigation
of the energy-accuracy trade-off among two hardware neu-
ron designs using SC, i.e., APC-based neuron and MUX-
based neuron, as shown in Figure 5 (a) and (b), respectively.
Hardware-based pooling is provided afterward, and finally
we present the structure optimization method for the overall
DCNN architecture.

A. APC-Based Neuron
Figure 5 (a) illustrates the APC-based hardware neuron

design, where the inner product is calculated using XNOR
gates (for multiplication) and an APC (for addition). To be
more specific, we denote the number of bipolar inputs and
stochastic stream length by n and m, respectively. Accord-
ingly, n XNOR gates are used to generate n products of
inputs (x′

is) and weights (w′
is), and then the APC accumulates

the sum of 1s in each column of the products. Since the
sum generated by APC is a binary number, the K-state FSM
design mentioned in Section III-B3 cannot be applied here
directly. Instead of an FSM, a saturated up/down counter
is used to perform the scaled hyperbolic tangent activation
function Btanh(·) for binary inputs. Details and optimization
of the Btanh(·) activation function using a saturated up/down
counter for binary inputs can be found in reference work [12].

For an APC-based neuron with the fixed bit stream length
1024, the accuracy, area, power, and energy performance with
respect to the input size are shown in Figure 6 (a), (b), (c),
and (d), respectively. To be more specific, as illustrated in
Figure 6 (a), APC-based neuron shows a very slow accuracy
degradation as input size increases. However, the area, power,
and energy of the entire APC-based neuron cell increases near
linearly as the input size grows, as shown in Figure 6 (b),
(c), and (d), respectively. The reason is as follows: With the
efficient implementation of Btanh(·) function, the hardware

...

Parallel
Counter

Up/Down
 Counter

w1

w2

w3

w4

wn

x1

x2

x3

x4

xn

... }n

...

binary number

n stochastic bit-streams
 with m length} one column of n products

one stochastic
 bit-stream
with m length

m

log2 n 1

...

Stanh

w1

w2

w3

w4

wn

x1

x2

x3

x4

xn

... ...

stochastic bit-streams

n stochastic bit-streams
 with m length}m

1n to 1
 Mux

(a)

(b)

1}n

Fig. 5. Various hardware neuron designs. (a) APC-based neuron, and (b)
MUX-based neuron.

2S-4

117

of Btanh(·) increases logarithmically as the input increases,
since the input width of Btanh(·) is log2n. On the other hand,
the number of XNOR gates and the size of the APC grow
linearly as the input size increases. Hence, the inner product
calculation part, i.e., XNOR array and APC, is dominant in
an APC-based neuron, and the area, power, and energy of the
entire APC-based neuron cell also increase at the same rate
as the inner product part when the input size increases.

Since the length of the stochastic bit stream is important, we
investigate the accuracy of APC-based neurons using different
stream lengths under different input sizes. As shown in Figure
7, longer bit stream length consistently outperforms lower bit
stream length in terms of accuracy in APC-based neurons with
different input sizes. However, designers should consider the
latency and energy overhead caused by long bit streams.

B. MUX-Based Neuron

As shown in Figure 5 (b), a MUX-based neuron is com-
prised of XNOR gates, a MUX, and a K-state FSM, in order
to compute the products of bipolar inputs (x′

is) and weights
(w′

is), the stochastic sum of all products, and the hyperbolic
tangent activation function, respectively. As the inner product
calculated by a MUX is a stochastic number, the K-state
FSM design mentioned in Section III-B3 can be used here
to implement the activation function Stanh(·).

Nevertheless, two problems must be taken into considera-
tion: (i) the inner product calculated by an n input MUX is
scaled to z

n , assuming the correct result is z, and (ii) with

the input z
n , the K-state FSM calculates tanh(K·z

2·n) instead
of the desired value tanh(z). Hence, in order to get the
correct activation, we need to scale up the results of MUX
by n times and multiply the stream by 2

K (or multiply by
2·n
K directly). As opposed to the relatively simple and efficient

data conversions on a software platform, such conversions in a
hardware-based neuron incurs significant hardware overhead,
because the linear gain transformation needs one more FSM
[20], and the multiplication requires one XNOR gate as well
as the generation of the other bipolar stochastic stream.

In this paper, considering an n inputs neuron with inner
product denoted by z, we select the state number K such that
2·n
K = 1, and the final output of the FSM is calculated as

Stanh(K,
z

n
) = tanh(

K · z
2 · n) = tanh(z) (2)

In this way, we achieve the desired activation result with no
additional bit stream conversion (i.e., no hardware overhead).

Fig. 6. Using the fixed bit stream length 1024, the number of inputs versus
(a) accuracy, (b) area, (c) power and (d) energy for an APC-based neuron.

Fig. 7. The length of bit stream versus accuracy under different input numbers
for an APC-based neuron.

Fig. 8. Using the fixed bit stream length 1024, the number of inputs versus
(a) accuracy, (b) area, (c) power and (d) energy for a MUX-based neuron.

We first investigate the performance of the MUX-based
neuron with respect to its input size. Figure 8 (a), (b), (c), and
(d) show the results of the number of inputs versus accuracy,
area, power, and energy, respectively, for a MUX-based neuron
using a fixed bit stream length which is equal to 1024. It is
important to achieve a high accuracy of a neuron cell, however,
as shown in Figure 8 (a), the accuracy of a MUX-based neuron
significantly degrades as the input size increases. The reason
is that MUX addition selects only one bit at a time and ignores
the rest of the bits, leading to low accuracy when input size is
large. In addition, one can observe from Figure 8 (b), (c), and
(d) that as the number of inputs increases, area, power, and
energy of the MUX-based neuron all tend to increase. This is
because a MUX-based neuron with more inputs requires more
XNOR gates and MUXes for inner product calculation, and
more states in the FSM (K = 2 ·n) to compute the activation
function. Hence, the increased hardware components result in
more area, power, and energy of the neuron cell.

Next, we investigate the relationship between bit stream
length and accuracy under different numbers of inputs. As
shown in Figure 9, for a certain input size, longer bit stream
results in higher accuracy, and the improvement of accuracy
is more significant when input size is larger. Hence, when
designing a MUX-based neuron, long bit stream can be applied
to compensate the accuracy degradation for large input size.

C. Pooling Operation
In a DCNN, down sampling steps are performed by the

pooling layers, which summarize the outputs of neighboring
groups of neurons in the same kernel map. Pooling operation
achieves the invariance to input data (i.e., image, video, etc.)
transformations and better robustness to noise and clutter.
Moreover, the inter-layer connections can be significantly
reduced for a hardware DCNN by using pooling layers.

Considering a pooling region consisting of k neurons:
{a1, · · · , ak} in a feature map, where ai denotes the activation
result of the i-th neuron, the pooling layer selects one activa-
tion aout at a time. In this paper, we adopt the average pooling,

2S-4

118

Fig. 9. The length of bit stream versus accuracy under different input numbers
for a MUX-based neuron.

where each activation result ai has the same probability to be
selected as output, i.e., aout = mean(a1 ∼ ak). For example,
the stochastic arithmetic mean over a 2×2 region is provided in
Figure 10, where three 2-to-1 MUXes are needed to implement
the average pooling.

D. Structure Optimization for the Entire DCNN Architecture
There are four performance metrics for the DCNN design,

i.e., accuracy, area, power, and energy. In this paper, we
consider a general DCNN optimization problem, where the
objective function is comprised of one or multiple metrics
and the rest of the metrics are considered as constraints, e.g.,
energy, power, and accuracy as objective function with area as
constraint. In addition, we introduce one more constraint that
the accuracy of hardware-based DCNN cannot be significantly
lower than the accuracy of software-based DCNN, so as to
make the accuracy of the hardware-based DCNN competitive.

The DCNN architecture of interest shown in Figure 1 con-
sists of two pooling layers, two convolutional layers, and one
fully-connected layer. The two pooling layers are implemented
using MUX trees, as described in Section IV-C. As for the
remaining two convolutional layers (referred to as layer 0 and
layer 1) and one fully-connected layer (referred to as layer 2),
they can be built using either APC-based neurons or MUX-
based neurons with a certain bit stream length.

We further investigate the influences of errors in layer 0,
layer 1 and layer 2 on the overall test error of the entire DCNN,
as shown in Figure 11, where the data values in each layer
follow a normal distribution (as observed in the test benches)
with various standard deviations representing the errors of the
neurons in that layer. It is observed that a layer closer to the
inputs has more impact on the overall accuracy of the DCNN
than a layer closer to the output layer. The explanation is that
inaccurate features captured near the inputs may affect all the
following layers, whereas the errors occurring near the output
layer can only disturb a few subsequent layers. Therefore, the
intuition is that accurate neuron structures should be applied
to the layers near inputs, and less accurate neurons can be
used in the layers closer to the output layer to achieve better
energy/power/area performance.

Next, we compare the performance between APC-based
neuron and MUX-based neuron using a fixed bit stream length
equal to 1024 under different input sizes, as shown in Table
I. Clearly, APC-based neuron is more accurate but occupies

 Mux

1/2 bit stream

 Mux

 Mux

a1

3

a2

a
a4

aout

1/2 bit stream

Fig. 10. A 4-to-1 pooling example.

Fig. 11. The impact of errors in different layers on the overall DCNN test
error.

TABLE I
COMPARISON BETWEEN APC-BASED NEURON AND MUX-BASED

NEURON USING 1024 BIT STREAM

APC-based neuron MUX-based neuron Ratio of APC/MUX (%)

Input size 16 32 64 16 32 64 16 32 64

Absolute error 0.15 0.16 0.17 0.29 0.56 0.91 51.94 27.56 18.34

Area (μm2) 209.9 417.6 543.2 110.7 175.3 279.8 189.7 238.2 194.1

Power (μW) 80.7 95.9 130.5 206.5 242.9 271.2 39.1 39.5 48.1

Energy (fJ) 177.4 383.7 548.1 110.0 169.1 238.9 161.3 226.9 229.5

more area than MUX-based neuron. Besides, as APC is much
slower than MUX, the latency of APC-based neuron is larger
than MUX-based neuron, which causes APC-based neuron
to consume more energy than MUX-based neuron for one
calculation. As for the power performance, an APC-based
neuron has less switching (due to the long latency) and larger
area than the MUX-based neuron, resulting in less dynamic
power, more leakage power, and less overall power.

The proposed structure optimization method for the overall
DCNN architecture is given in Figure 12. As the bit stream
length significantly affects the energy consumption and ac-
curacy of the entire DCNN, the first step is to apply binary
search to choose a suitable bit stream length for a DCNN
configuration (i.e., neuron structure configuration in each
layer). Note that the DCNN configuration used in step 1 is not
important as the results will be refined in the following steps.
In step 2, under the fixed bit stream length, all the promising
configurations are explored, where some configurations can be
ruled out, e.g., all layers using MUX-base neurons is highly
inaccurate and can be ruled out. Based on the results of step 2,
the configurations with desirable performance will be selected,
and in the following step 3, for each configuration, we try other
bit stream lengths to see if better performance can be achieved.
The final configuration of the DCNN is decided based on the
result of step 3, and several more iterations may be needed to
further refine the result by exploring more configurations.

V. EXPERIMENTAL RESULTS

The LeNet5 DCNN used in this experiment is built with a
784−11520−2880−3200−800−500−10 configuration. The
MNIST handwritten digit image dataset [21] consists of 60,000
training data and 10,000 testing data with 28x28 grayscale
image and 10 classes is used in the experiments, and the
network is trained with 20 epochs (batch size =500). We use
Synopsys Design Compiler to synthesize the DCNNs with the
45nm Nangate Open Cell Library [22].

Table II concludes the configurations and performance for
all the explored hardware-based DCNNs (No. 1−15) using the
proposed structure optimization method, the 8 bit conventional
binary pipelined baseline (No. 16) and software-based DCNNs
using CPU (No. 17) or GPU (No. 18) for comparison. Note
that the power for software is estimated using Thermal Design
Power (TDP), and the energy is calculated by multiplying the
run time and TDP.

2S-4

119

YesNo

Step 1: find a suitable bit stream
 length using binary search

Step 2: explore configurations
 using the fixed bit stream

Step 3: explore other bit streams
for the promising configurations

Constraints satisfied?
Performance satisfactory? End

Fig. 12. Structure optimization method for the entire DCNN.

Without any loss of generality, we set the desired accuracy
to be ≤ 4.5% error rate. In the first step of the proposed
structure optimization method, the bit stream length is set
to 1024 using binary search. In step 2, using the fixed bit
stream length, all configurations are explored, as shown in
Table II (No. 1− 8). DCNNs in No. 1− 5 are ruled out due
to the low accuracy, and in step 3, the remaining promising
DCNNs in No. 6 − 8 are explored using the decreased bit
stream length 512 bits, where the results are given as DCNNs
in No. 9−11. Since DCNNs No. 10−11 satisfy the accuracy
constraint, we further reduce the bit stream to 256 to improve
energy performance, where DCNNs in No. 12 − 13 provide
the results. This time, only DCNNs in No. 13 (all APC-based
neurons) meet the accuracy constraint (≤ 4.5%). Hence, the
bit stream length is further reduced for DCNN in No. 13 so
as to find the configuration that achieves the minimum energy
while satisfying the accuracy constraint.

The DCNNs that use more MUX-based neurons provide
smaller footprints, which are suitable for area-constraint em-
bedded systems, whereas the DCNNs with more APC-based
neurons achieve better accuracy, energy and power, which are
good for power/energy-constraint embedded systems. Given
the constraint(s), the proposed structure optimization method
can provide the DCNN configurations with satisfactory per-
formance. For instance, DCNNs in No. 10, 11, 13− 15 are all
promising configurations found by the proposed method, given
the accuracy constraint. Compared with the conventional 8-bit
binary implementation, the presented hardware-based DCNN
using SC (No. 15) achieves 55X, 151X, and 2X improvement
in terms of area, power and energy, respectively, while the
error is increased by 2.86%.

VI. CONCLUSION

In this paper, two hardware-based neuron structures using
SC were analyzed, and the influence of inaccuracy of neurons
in different layers on the overall DCNN accuracy was studied.
A structure optimization method was proposed for a general
DCNN architecture, which jointly optimized the accuracy,
area, power, and energy. Experimental results demonstrated
that compared with the binary ASIC DCNNs, the area, power
and energy of the hardware-based DCNN generated by the
proposed structure optimization were significantly improved,
whereas the accuracy performance was slightly degraded.

REFERENCES

[1] Y. Bengio, “Learning deep architectures for ai,” Foundations and
trends R© in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[2] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[3] T. N. Sainath, A.-r. Mohamed, B. Kingsbury, and B. Ramabhadran,
“Deep convolutional neural networks for lvcsr,” in 2013 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing. IEEE,
2013, pp. 8614–8618.

[4] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[5] A. Karpathy et al., “Large-scale video classification with convolutional
neural networks,” in Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, 2014, pp. 1725–1732.

TABLE II
COMPARISON AMONG VARIOUS HARDWARE-BASED DCNNS AND

SOFTWARE-BASED DCNNS

No.
Bit

Layer 0, 1, 2
Error Area Power Energy

Stream (%) (mm2) (W) (μJ)
1 1024 MUX, MUX, MUX 21.66 6.62 3.3 4.4
2 1024 MUX, MUX, APC 11.89 7.42 1.3 6.7
3 1024 MUX, APC, MUX 16.25 8.05 1.5 6.9
4 1024 MUX, APC, APC 8.68 8.85 1.7 8.7
5 1024 APC, MUX, MUX 7.69 11.75 2.6 12.0
6 1024 APC, MUX, APC 2.49 12.56 2.7 13.8
7 1024 APC, APC, MUX 4.32 13.18 3.0 14.0
8 1024 APC, APC, APC 1.70 13.98 3.1 15.8

9 512 APC, MUX, APC 4.66 12.56 2.7 6.9
10 512 APC, APC, MUX 4.45 13.18 3.0 7.0
11 512 APC, APC, APC 1.70 13.98 3.1 7.9
12 256 APC, APC, MUX 5.20 13.18 3.0 3.5
13 256 APC, APC, APC 2.00 13.98 3.1 4.0
14 128 APC, APC, APC 2.34 13.98 3.1 2.0
15 64 APC, APC, APC 4.40 13.98 3.1 1.0

16 8 bit fixed point binary(pipelined) 1.54 769.30 470.0 2.0
17 CPU: two Intel Xeon W5580 1.54 263 130.0 198200
18 GPU: NVIDIA Tesla C2075 1.54 520 225.0 96443

[6] C. Szegedy et al., “Going deeper with convolutions,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2015, pp. 1–9.

[7] M. Motamedi, P. Gysel, V. Akella, and S. Ghiasi, “Design space
exploration of fpga-based deep convolutional neural networks,” in 2016
21st Asia and South Pacific Design Automation Conference (ASP-DAC).
IEEE, 2016, pp. 575–580.

[8] A. Rahman, J. Lee, and K. Choi, “Efficient fpga acceleration of
convolutional neural networks using logical-3d compute array,” in 2016
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2016, pp. 1393–1398.

[9] P. Li et al., “The synthesis of complex arithmetic computation on
stochastic bit streams using sequential logic,” in Proceedings of the
International Conference on Computer-Aided Design. ACM, 2012,
pp. 480–487.

[10] J. Li and J. Draper, “Accelerating soft-error-rate (ser) estimation in the
presence of single event transients,” in Proceedings of the 53rd Annual
Design Automation Conference. ACM, 2016, p. 55.

[11] J. Li and J. Draper, “Joint soft-error-rate (ser) estimation for combi-
national logic and sequential elements,” in VLSI (ISVLSI), 2016 IEEE
Computer Society Annual Symposium on. IEEE, 2016, pp. 737–742.

[12] K. Kim et al., “Dynamic energy-accuracy trade-off using stochastic
computing in deep neural networks,” in Proceedings of the 53rd Annual
Design Automation Conference. ACM, 2016, p. 124.

[13] K. Sanni, G. Garreau, J. L. Molin, and A. G. Andreou, “Fpga imple-
mentation of a deep belief network architecture for character recognition
using stochastic computation,” in Information Sciences and Systems
(CISS), 2015 49th Annual Conference on. IEEE, 2015, pp. 1–5.

[14] Y. Ji, F. Ran, C. Ma, and D. J. Lilja, “A hardware implementation of
a radial basis function neural network using stochastic logic,” in Pro-
ceedings of the 2015 Design, Automation & Test in Europe Conference
& Exhibition. EDA Consortium, 2015, pp. 880–883.

[15] A. Ren et al., “Designing reconfigurable large-scale deep learning
systems using stochastic computing,” in 2016 IEEE International Con-
ference on Rebooting Computing. IEEE, 2016.

[16] Z. Li et al., “Dscnn: Hardware-oriented optimization for stochastic
computing based deep convolutional neural networks,” in Computer
Design (ICCD), 2016 IEEE 34th International Conference on. IEEE,
2016.

[17] B. D. Brown and H. C. Card, “Stochastic neural computation. ii. soft
competitive learning,” IEEE Transactions on Computers, vol. 50, no. 9,
pp. 906–920, 2001.

[18] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[19] P.-S. Ting and J. P. Hayes, “Stochastic logic realization of matrix
operations,” in Digital System Design (DSD), 2014 17th Euromicro
Conference on. IEEE, 2014, pp. 356–364.

[20] B. D. Brown and H. C. Card, “Stochastic neural computation. i.
computational elements,” IEEE Transactions on computers, vol. 50,
no. 9, pp. 891–905, 2001.

[21] L. Deng, “The mnist database of handwritten digit images for machine
learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6,
pp. 141–142, 2012.

[22] Nangate 45nm Open Library, Nangate Inc., 2009. [Online]. Available:
http://www.nangate.com/

2S-4

120

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

