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Abstract—The problem of big data analytics is gaining 
increasing research interest because of the rapid growth in the 
volume of data to be analyzed in various areas of science and 
technology. In this paper, we investigate the characteristics of 
the cloud computing requests received by the cloud 
infrastructure operators. The cluster usage dataset released by 
Google is thoroughly studied. To address the self-similarity 
and non-stationarity characteristics of the workload profile in 
a cloud computing system, fractal modeling techniques similar 
to some cyber-physical system (CPS) applications are 
exploited. A trace-based prediction of the job inter-arrival time 
and aggregated resource request sent to server cluster in the 
near future is effectively performed by solving fractional-order 
differential equations. The distributions of important 
parameters including job/task duration time and resource 
request per task in terms of CPU, memory, and storage are 
extracted from the cluster dataset are fitted using the alpha-
stable distribution.  

Keywords- cloud computing; alpha-stable distribution; 
fractional order calculus; Google cluster dataset. 

I.  INTRODUCTION  
In recent years, a variety of areas have seen rapid growth 

in the amount of data to be recorded, analyzed, and 
processed [1][2]. According to [3], the United States needs 
140,000 to 190,000 more workers with “deep analytical” 
expertise and 1.5 million more data-literate managers to deal 
with the data flood. One of these areas with data explosion is 
the Internet. The Internet has become a more and more 
complex system in terms of both the ever increasing user 
population and a number of emerging applications and 
services. Inevitably, a huge amount of communication data is 
generated in the process of interaction between different 
network nodes.  

Cloud computing, a popular and well-developed 
paradigm which is usually implemented through the Internet, 
is our major interest in this paper (with the system 
framework shown in Fig. 1). Different from the prior work 
which focuses on exploiting the cloud infrastructure to tackle 
the problem of big data analytics “on” the cloud [4], we will 
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look into the problem of data analytics “for” the cloud, i.e. 
the characteristics of the communications and computations 
within a cloud computing system, especially the requests 
sent from cloud users to and being processed in the cluster. 
Such characteristics, if studied carefully, can be used to 
model the users’ behavior, which provides useful 
information for a cloud infrastructure operator to optimize 
the operational cost and improve the quality of service 
(QoS). The cloud infrastructure operators are concerned 
about a number of aspects of cloud users’ behaviors 
including the task incoming rate, the amount of requested 
CPU/memory/storage resources, the duration of the tasks, 
etc. Based on these analysis results, efficient management 
techniques, such as server consolidation and load balancing, 
can be applied to achieve a desirable tradeoff between the 
power consumption and the processing latency, which are 
the two major performance metrics, and maximize the 
overall profit. In order to find the pattern in the 
aforementioned aspects, data sampled in real world rather 
than simulated user behavior is preferred because of the 
highly diverse workload profile in the real-world cloud 
computing system, ranging from scientific computing to 
software development and testing. Fortunately, Google, as a 
leading cloud infrastructure operator, has released a 
substantial cluster usage dataset [5], which can be used for a 
comprehensive understanding of the details of the cloud 
computing workload. 

The work presented in this paper has two major 
components. First, in order to capture the dynamics of the 
series of incoming task, an effective prediction method is 
proposed to estimate the workload profile (i.e., the inter-
arrival time between jobs) and the resource request in terms 
of CPU and memory in the cluster in the near future based 
on the history information. Second, the distributions of 
several workload-related parameters extracted from the 
cluster dataset (e.g. job duration, CPU resource request, etc.) 
are analyzed and a statistical fitting is derived for these 
distributions. It is worth noting that neither of the two 
problems is trivial. Because a large number of users share a 
common computing infrastructure, there is a complex 
mixture of different types of workload, thereby making the 
aggregated workload pattern difficult to predict. Also, as is 
pointed out in [6], the job durations and resource request per 
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job form heavy-tailed distributions and cannot be accurately 
fitted by common statistical distributions like lognormal, 
Weibull, or power law distributions. However, we make the 
observation that the workload profile in a cloud computing 
system exhibits the characteristics that resemble some other 
physical processes, such as heart beat of a human being [7] 
or the cumulative concentration of cloud condensation nuclei 
(CCN) collected via a CCN spectrometer [8]  which are 
also known as the workload of a cyber-physical system 
(CPS) [9]. Two examples of such characteristics are self-
similarity, fractality, and non-stationarity. Self-similarity is 
the property that a series looks the same under the 
magnification operation at different scales, fractality is the 
property that a structure/process possesses non-integer fractal 
dimensions, and non-stationarity is the property that the 
distribution and statistical moments of a random variable do 
not remain the same over time. In light of these properties, 
we use the fractal modeling method which is effective in 
CPS applications. The distributions of extracted parameters 
are fitted using the alpha-stable distribution [10], and the 
prediction is performed by solving fractional-order 
differential equations. 

The rest of this paper is organized as follows: Section II 
presents a review of the related work; Section III shows an 
overview of the Google cluster dataset used in this paper; the 
prediction and distribution fitting results are elaborated 
Section IV and Section V, respectively; and the last section 
is the conclusion. 

II. RELATED WORK 
Since the concept of “big data” has been brought up, 

general discussion regarding the benefits, challenges, and 
drawbacks are made in a series of research articles [11][12]. 
Also, a number of models and techniques have been 

proposed to address the issue of big data storage and 
processing. For instance, a general model for big data 
computing and communication called DOT is proposed in 
[13], and an optimized MapReduce framework for a specific 
processor is presented in [14]. 

There are also researches based on the Google cluster 
dataset. Reiss et al. [6] discusses the heterogeneity and the 
dynamicity of the workload on the cloud and denies the 
usage of some popular simplified assumptions including 
Poisson arrival rate and Gaussian distribution for the task 
duration. Di et al. [15] compares the workload in cloud 
computing versus grid computing and identifies a number of 
differences between the two in terms of job/task length, job 
priority, machine utilization level, etc. Liu et al. [16] focuses 
on the frequency and pattern of machine maintenance events, 
job and task level workload behavior, and how the overall 
resource on the cluster is used. Finally, Zhang et al. [17] 
addresses the dynamic capacity provisioning problem that 
minimizes the total energy cost subject to a specific delay 
constraint. 

 
Figure 2. State transition diagram of a job/task in the cluster 

 
Figure 1. System framework of a cloud computing system 
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Figure 3. Job inter-arrival time series plotted under different scales 
 

Figure 4. Statistical moments to the fourth order of the job inter-
arrival time series 
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The study of self-similarity property (first proposed in 
[18]) in the context of computer networks, which is also 
observed from the workload characteristics from the Google 
cluster dataset as will be discussed in this paper,  can be 
traced back to [19][20], which presents the Ethernet traffic is 
self-similar. The study was extended by the authors of [21] 
to show that the traffic in the World Wide Web (WWW) is 
also self-similar. Moreover, the self-similarity in the 
topology of the Internet is analyzed in [22]. 

In contrast to the prior work that focus on the Google 
cluster dataset, we consider a comprehensive statistical 
analysis of the characteristics of the workload in a cloud 
computing system and demonstrate that alpha-stable 
distribution provides a good statistical model for the 
distribution of the job/task duration and the resource request 
per task. In addition, we exploit the compact representation 
of the workload in a cloud computing system provided by 
our fractal analysis to the dynamics of parameters such as the 
aggregated CPU/memory requests per time slot, which can 
further enable more efficient optimization strategies. 

III. AN OVERVIEW OF GOOGLE CLUSTER DATASET 
The Google cluster dataset [5] released in 2011 is 

measured on a heterogeneous 7000-machine server cluster 
on a 29-day period involving 672,075 jobs and more than 48 
million tasks. The whole dataset is partitioned into six 
families, namely, machine events, machine attributes, job 
events, task events, task usage, and task constraints, which 
covers a wide range of information regarding the server 
cluster the incoming job/task sequence. The machine events 
show the addition, change, and removal of machines in the 
cluster, as well as the platform and available CPU/memory 
resources of each machine. The machine attributes includes 
other attributes that can be considered as task constraints. 
The job events and task events dataset record the state 
transition of each job/task (the state specification is discussed 
later). And the task usage dataset contains the mean and 
maximum usages of resource, i.e., CPU, memory, disk, and 
I/O, of every task measured in each five-minute time interval. 
Our focus in this paper will be on job-related and task-related 
information. 

 According to the cluster trace, a job, which contains one 
or more tasks, is the minimum unit of any user request 
received by the cloud. Once the job is submitted (i.e., 
received by the server cluster), however, different tasks 
within it can be scheduled and executed separately among 
different servers. A job finishes execution only after all its 
tasks have finished executions. Jobs and tasks share the same 
state transition diagram, which is shown in Fig. 2. As can be 
seen from the diagram, once a job/task is submitted, it will 
wait in the pending state to be scheduled to a server machine 
for execution by the cluster scheduler, after which it will 
enter the running state. After finishing execution, the job/task 
will be put into the dead state. It will also enter the dead state 
in the following cases: the job/task (i) is evicted to release 
resource for other tasks with higher priority, (ii) has a failure 

at execution time (or in rare cases, while pending), (iii) is 
canceled by the user, or (iv) is terminated abnormally for 
other reasons. A job/task in the dead state can be submitted 
again if it does not finish execution earlier. Please note that 
in this paper, the duration of a job/task is calculated as the 
difference of the time when it enters the “submitted” state 
and the time when it enters the “dead” state. Although the 
jobs/tasks that are put back into the scheduling queue retain 
their identifiers, we treat the resubmitted job/task the same as 
a new coming one, since this kind of jobs/tasks no longer 
require any attention or resource allocation from the cluster 
before the resubmission happens.  

IV. DYNAMIC PREDICTION METHOD AND RESULTS 

To investigate the dynamics of the jobs and resource 
requests arriving at the cluster, which is important for 
workload profiling in a cloud computing system, and further 
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develop an effective prediction method, we extract the job 
inter-arrival time and the aggregated resource request from 
the Google cluster trace. The job inter-arrival time sequence 
is generated by processing the records in the dataset of job 
events in temporal order and calculating the time difference 
between one job submission and the previous one. The 
aggregated CPU and memory requests of the cluster are 
calculated for each five-minute time slot.  

A. Complex nature of underlying processes in a cloud 
computing system 
As is stated earlier, the dynamics of the job arrival or the 

resource requests sent to the cluster are complex and 
challenging to model. For instance, the job arrival process 
cannot be simply modeled as a Poisson process or other 
simple stochastic processes [6]. Besides, the process exhibits 
similar properties to some CPS applications in terms of self-
similarity and non-stationarity [9]. Fig. 3 shows the plot of 
job inter-arrival time series under different scales (with one 
hundred thousand, ten thousand, and one thousand sample 
points, respectively). One can observe that the job inter-
arrival time series not only exhibits rich variability, but also 
has some degree of self-similar behavior. The plots of mean 
value, variance, skewness (defined as the third standardized 
moment), and kurtosis (defined as the fourth standardized 
moment) of different segments of the job inter-arrival time 
series are shown in Fig. 4. As can be seen from the figures, 
these statistical moments do not remain stable even for a 
short segment in the series, which indicates that the process 
cannot be characterized as stationary or quasi-stationary. The 
complex behavior of the job arrival process implicates that 
the process is not Gaussian and the theory of linear time-
invariant (LTI) system is not applicable to model this process. 
The observed variability of higher order moments and the 
self-similarity suggest that the workload in a cloud 
computing system may possess a multi-fractal signature. 
Consequently, we estimate the multi-fractal spectrum[23][24] 
as shown in Fig. 5. One can see from the figure a wide 
distribution of fractal dimensions ranging from 0.7 to 2.3 

centering at around 1.05. The complex multi-fractal behavior 
of the job inter-arrival time vector implies the existence of 
long range dependency. In other words, the job inter-arrival 
times after two different jobs have some degree of 
dependence even if they have a large number of other jobs in 
between.  

B. Fractal modeling based prediction method 
For the server cluster to know when to turn off some 

servers for power saving or reserve some resource for the 
imminent job incoming burst, an accurate estimation of the 
number of incoming tasks and the amount of available 
resources in the near future is crucial. To address the long 
range memory property and the time dependent nature of the 
job arrival process and the resource request, we propose a 
fractional order differential equation prediction model with 
time dependent parameters. 

The �-th order derivative of a function ���� with any real 
value �, denoted by ������ is defined as follows: 

������ � 	
�� � 
� � ����� � �� � ��������������
�  (1) 

where � � �
� and 
��� is the gamma function. When � is 
equal to a positive integer, Eqn. (1) will reduce to the 
conventional definition and derivatives. Since we are 
interested in modeling discrete sequences rather than 
continuous functions, we use a binomial approximation of 
Eqn. (1), which is shown as follows [25] 

������ � ���	�� � �
�  � ��� � ��!
�"�  (2) 

where ���� is the sequence we are interested in (aggregated 
resource request sent to the cluster in a time slot or the time 
period between two consecutive incoming jobs), and #��$’s 
are binomial coefficients. 

Using the fractional order derivatives as defined in Eqn. 
(2), we propose the following model ���!����� � %������� & '��� (3) 

where 
��� , %��� , and '���  are all time-dependent 
parameters. For each �, the value of ���� can be predicted 
using the values of ��(� up to ��� � 	� by applying the 
following steps: (i) we estimate the order of fractional 
derivative, 
��� , through a wavelet scaling analysis 
approach inspired from [26]; (ii) a low dimension linear 
regression problem is solved to find the value for parameters %���  and '��� ; (iii) By combining Eqn. (2) and (3) and 
plugging in all the known values, the value of ����  is 
obtained. For the purpose of reducing computation 
complexity, the first few binomial term rather than the full 
binomial expansion can be used to calculate the value of ������  as in Eqn. (2).  By following this approach, we 
construct a compact model for the workload in a cloud 
computing system with few parameters. 

 
Figure 5. Multi-fractal spectrum of the job inter-arrival time series 
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Figure 7. Statistical distribution fitting for the job duration 
 

 
Figure 8. Statistical distribution fitting for the task duration 
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μ = 2.86 × 109, σ = 3.57 × 1010

Alpha stable distribution fitting
with α = 0.56, β  = 0.99,
γ = 7.47 × 107, δ = 7.18 × 106

10
4

10
6

10
8

10
10

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Task duration time (μs)

Po
rti

on
 o

f t
as

ks
 la

st
in

g 
lo

ng
er

 

 

Extracted data
Alpha stable distribution fitting
with α = 0.69, β  = 0.71,
γ = 9.61× 106, δ = 0.52× 108

C. Prediction results and discussion 
The proposed fractional differential equation method is 

compared with an auto-regressive (AR) predictor [27] up to 
the order of 16 as the baseline. The comparison of prediction 
accuracy in terms of mean square error (MSE) is shown in 
Fig. 6. The errors of the baseline predictor are normalized to 
1. 

For aggregated requests of CPU and memory resource, 
significant improvement is achieved as can be seen from the 
figure. The MSE reduction is 72% and 59% in the case of 
CPU request and memory request, respectively. For the 
prediction of job inter-arrival time, the proposed method 
achieved 8% reduction of mean square error compared to the 
AR predictor. But at some sampling points where the job 
inter-arrival time is much larger (by several orders of 
magnitude) than the neighboring samples, the prediction 
accuracy can have significant degradation. 

V. STATISTICAL DISTRIBUTION FITTING METHOD AND 
RESULTS 

Apart from the job inter-arrival time and aggregated 
resource request of the cluster, we also extract the vector of 
job duration, task duration, and resource request per task in 
terms of CPU, memory, and disk storage. However, when 
applying the same prediction approach proposed in Section 
IV to these vectors, we cannot get accurate prediction results. 
The main reason is that the dependence between different 
elements in these vectors is relatively weak or too complex 
to be captured by a simple fractal model, and thus the vectors 
behave similarly to a series of i.i.d. random variables that are 
drawn from a certain statistical distribution. Therefore, 
instead of trying to design an accurate prediction method, we 
turn to finding an appropriate statistical distribution that is 
the most effective to fit the data. Trace extraction results 
show that the job duration, the task duration, and the 
resource request per task form a heavy-tailed distribution, 
which means that there is no satisfactory Gaussian fitting for 
them. In this paper, a general class of distributions, the 
alpha-stable distribution, is adopted, which captures the 

heavy-tailed nature of the empirical distribution and provides 
high flexibility for statistical analysis.  

A. Alpha-stable distribution 
Alpha-stable distributions do not have analytically 

expressible probability density functions (pdf) or cumulative 
distribution functions (cdf) in the general case, but can be 
characterized by the characteristic functions, )�*�, with the 
form as follows )�*+ 
, -, ., /� � 01234*/ � 5.*5��	 � 4-678�*�9�: (4) 

where  

9 � ;<=8 #>
? $ , 
 @ 	
� ?> AB75*5 , 
 � 	 (5) 

 

678�*� � C 	, DDDDDDDDD* E ((, * � (�	, * F (  (6) 

 
Figure 6. Comparison of prediction accuracy 
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And the relationship between the pdf of a distribution, ����, 
and its characteristic function can be expressed as follows 

���� � 	?>� )�*�G�H�I�*J
�J  (7) 

Alpha-stable distribution represents a flexible set of 
probability distributions. By properly setting the values of 
the parameters 
, -, ., and /, one can change the shape of 
the pdf and cdf of an alpha-stable distribution. One can 
observe from the characteristic function of an alpha-stable 
distribution that it will reduce to some simple distributions 
with some specific settings of these parameters. For instance, 
when 
 � ?, parameter - has no effect in Eqn. (4), and the 
distribution reduces to a Gaussian distribution with the mean 
of / and the variance of ?.K. The alpha-state distribution can 
be reduced to long-tail distributions also. For example, in the 
cases that 
 � 	 , - � ( , and 
 � 	L? , - � 	 , the alpha-
stable distribution will reduce to the Cauchy distribution and 
the Levy distribution, respectively. 

B. Statistical fitting results and discussion 
Please note that both the Gaussian fitting and the alpha-

stable distribution fitting are obtained through maximum 
likelihood estimation (MLE). 

Fig. 7 shows the distribution fitting for the job duration, 
and Fig. 8 shows the distribution fitting for the task duration 
performed on a segment of the whole trace containing 
approximately 1.5 million tasks. The parameters of the 
alpha-stable distribution are shown in the figures. As can be 
seen from Fig. 7 and Fig. 8, the distributions are good fit to 
the corresponding data extracted from the cluster trace. In 
spite of the disparity that begins to appear when the job/task 
duration grows, we can use the fitted alpha-stable 
distribution to represent the real data and provide guidance 
for efficient resource management policies for the server 
cluster without any severe problem for the following reasons. 
First, since we only use a finite number of samples to 
generate the empirical survival functions, it is likely that 
some rare events (i.e. jobs/tasks with extremely long 
duration) are not captured in this process, and the proportion 
that long lasting jobs/tasks are actually higher than that 
shown in the figure, which reduces the difference between 
the fitted distribution and the real data. Second, if we 
generate random task durations according to the fitted 
distribution to simulate the task profile in real world, the 
error is within acceptable range for most of the time, since 
the empirical survival function only begin to decrease 
sharply around the first permille. And last but not the least, 
as opposed to the Gaussian distribution fitting results, the 
alpha-stable distribution fitting tends to overestimate the 
proportion of long-lasting tasks, which will only result in 
conservative resource management policies that do not cause 
serious problems such as violations in the service level 
agreement. 

Fig. 9 shows the distribution fitting results for the CPU, 
memory, and disk storage request per task. The Google trace 

only provided the normalized values of these requests per 
task. The fitting is performed on a segment of the total trace 
which contains approximately 1.5 million tasks. As can be 
seen from the figure, the empirical inverted cdf curve of the 
resource request resource request per task is relatively 
unsmooth compared to that of the job duration or the task 
duration, which is because of the fact that the requested 

 (a) 

 
(b) 

 
(c) 

Figure 9. Statistical distribution fitting for resource request per task.  
(a) CPU request; (b) memory request; (c) disk storage request. 
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amount of resource is usually set manually by the users. 
Nevertheless, the alpha-stable distribution fits the heavy tail 
of the empirical survival function well. Although the 
Gaussian fitting for the resource requests seems acceptable 
for tasks requesting relatively small portion of resources (e.g. 
0.05 unit of CPU or memory resource), it significantly 
underestimate the probability that a task request for large 
amount of resources, which in fact requires more attention in 
order to find an appropriate machine to execute it.  

VI. CONCLUSION 
In this paper, we investigate some important parameters 

extracted from the Google cluster dataset related to the 
workload characteristics in a cloud computing system 
including the job inter-arrival time, the job/task duration, the 
resource request per task, and the aggregated resource 
request sent to the cluster. Since no simple dynamic or 
statistical model can characterize the self-similarity and non-
stationarity property that these parameters exhibit, a set of 
fractal modeling techniques are applied. Based on the 
prediction of the job inter-arrival time and the aggregated 
resource request sent to the cluster and the estimation of 
job/task duration and resource request per task in this paper, 
efficient resource management techniques can be further 
developed to benefit the cloud infrastructure operators. 
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