
Trace-Based Analysis and Prediction of Cloud Computing User Behavior Using the
Fractal Modeling Technique

Shuang Chen, Mahboobeh Ghorbani, Yanzhi Wang, Paul Bogdan, Massoud Pedram
Department of Electrical Engineering

University of Southern California
Los Angeles, the United States

{shuangc, mahboobg, yanzhiwa, pbogdan, pedram}@usc.edu

Abstract—The problem of big data analytics is gaining
increasing research interest because of the rapid growth in the
volume of data to be analyzed in various areas of science and
technology. In this paper, we investigate the characteristics of
the cloud computing requests received by the cloud
infrastructure operators. The cluster usage dataset released by
Google is thoroughly studied. To address the self-similarity
and non-stationarity characteristics of the workload profile in
a cloud computing system, fractal modeling techniques similar
to some cyber-physical system (CPS) applications are
exploited. A trace-based prediction of the job inter-arrival time
and aggregated resource request sent to server cluster in the
near future is effectively performed by solving fractional-order
differential equations. The distributions of important
parameters including job/task duration time and resource
request per task in terms of CPU, memory, and storage are
extracted from the cluster dataset are fitted using the alpha-
stable distribution.

Keywords- cloud computing; alpha-stable distribution;
fractional order calculus; Google cluster dataset.

I. INTRODUCTION
In recent years, a variety of areas have seen rapid growth

in the amount of data to be recorded, analyzed, and
processed [1][2]. According to [3], the United States needs
140,000 to 190,000 more workers with “deep analytical”
expertise and 1.5 million more data-literate managers to deal
with the data flood. One of these areas with data explosion is
the Internet. The Internet has become a more and more
complex system in terms of both the ever increasing user
population and a number of emerging applications and
services. Inevitably, a huge amount of communication data is
generated in the process of interaction between different
network nodes.

Cloud computing, a popular and well-developed
paradigm which is usually implemented through the Internet,
is our major interest in this paper (with the system
framework shown in Fig. 1). Different from the prior work
which focuses on exploiting the cloud infrastructure to tackle
the problem of big data analytics “on” the cloud [4], we will

This work is supported in part by the Software and Hardware Foundations
program of the NSFs Directorate for Computer & Information Science &
Engineering.

look into the problem of data analytics “for” the cloud, i.e.
the characteristics of the communications and computations
within a cloud computing system, especially the requests
sent from cloud users to and being processed in the cluster.
Such characteristics, if studied carefully, can be used to
model the users’ behavior, which provides useful
information for a cloud infrastructure operator to optimize
the operational cost and improve the quality of service
(QoS). The cloud infrastructure operators are concerned
about a number of aspects of cloud users’ behaviors
including the task incoming rate, the amount of requested
CPU/memory/storage resources, the duration of the tasks,
etc. Based on these analysis results, efficient management
techniques, such as server consolidation and load balancing,
can be applied to achieve a desirable tradeoff between the
power consumption and the processing latency, which are
the two major performance metrics, and maximize the
overall profit. In order to find the pattern in the
aforementioned aspects, data sampled in real world rather
than simulated user behavior is preferred because of the
highly diverse workload profile in the real-world cloud
computing system, ranging from scientific computing to
software development and testing. Fortunately, Google, as a
leading cloud infrastructure operator, has released a
substantial cluster usage dataset [5], which can be used for a
comprehensive understanding of the details of the cloud
computing workload.

The work presented in this paper has two major
components. First, in order to capture the dynamics of the
series of incoming task, an effective prediction method is
proposed to estimate the workload profile (i.e., the inter-
arrival time between jobs) and the resource request in terms
of CPU and memory in the cluster in the near future based
on the history information. Second, the distributions of
several workload-related parameters extracted from the
cluster dataset (e.g. job duration, CPU resource request, etc.)
are analyzed and a statistical fitting is derived for these
distributions. It is worth noting that neither of the two
problems is trivial. Because a large number of users share a
common computing infrastructure, there is a complex
mixture of different types of workload, thereby making the
aggregated workload pattern difficult to predict. Also, as is
pointed out in [6], the job durations and resource request per

2014 IEEE International Congress on Big Data

978-1-4799-5057-7/14 $31.00 © 2014 IEEE

DOI 10.1109/BigData.Congress.2014.108

754

2014 IEEE International Congress on Big Data

978-1-4799-5057-7/14 $31.00 © 2014 IEEE

DOI 10.1109/BigData.Congress.2014.108

733

2014 IEEE International Congress on Big Data

978-1-4799-5057-7/14 $31.00 © 2014 IEEE

DOI 10.1109/BigData.Congress.2014.108

733

2014 IEEE International Congress on Big Data

978-1-4799-5057-7/14 $31.00 © 2014 IEEE

DOI 10.1109/BigData.Congress.2014.108

733

job form heavy-tailed distributions and cannot be accurately
fitted by common statistical distributions like lognormal,
Weibull, or power law distributions. However, we make the
observation that the workload profile in a cloud computing
system exhibits the characteristics that resemble some other
physical processes, such as heart beat of a human being [7]
or the cumulative concentration of cloud condensation nuclei
(CCN) collected via a CCN spectrometer [8] which are
also known as the workload of a cyber-physical system
(CPS) [9]. Two examples of such characteristics are self-
similarity, fractality, and non-stationarity. Self-similarity is
the property that a series looks the same under the
magnification operation at different scales, fractality is the
property that a structure/process possesses non-integer fractal
dimensions, and non-stationarity is the property that the
distribution and statistical moments of a random variable do
not remain the same over time. In light of these properties,
we use the fractal modeling method which is effective in
CPS applications. The distributions of extracted parameters
are fitted using the alpha-stable distribution [10], and the
prediction is performed by solving fractional-order
differential equations.

The rest of this paper is organized as follows: Section II
presents a review of the related work; Section III shows an
overview of the Google cluster dataset used in this paper; the
prediction and distribution fitting results are elaborated
Section IV and Section V, respectively; and the last section
is the conclusion.

II. RELATED WORK
Since the concept of “big data” has been brought up,

general discussion regarding the benefits, challenges, and
drawbacks are made in a series of research articles [11][12].
Also, a number of models and techniques have been

proposed to address the issue of big data storage and
processing. For instance, a general model for big data
computing and communication called DOT is proposed in
[13], and an optimized MapReduce framework for a specific
processor is presented in [14].

There are also researches based on the Google cluster
dataset. Reiss et al. [6] discusses the heterogeneity and the
dynamicity of the workload on the cloud and denies the
usage of some popular simplified assumptions including
Poisson arrival rate and Gaussian distribution for the task
duration. Di et al. [15] compares the workload in cloud
computing versus grid computing and identifies a number of
differences between the two in terms of job/task length, job
priority, machine utilization level, etc. Liu et al. [16] focuses
on the frequency and pattern of machine maintenance events,
job and task level workload behavior, and how the overall
resource on the cluster is used. Finally, Zhang et al. [17]
addresses the dynamic capacity provisioning problem that
minimizes the total energy cost subject to a specific delay
constraint.

Figure 2. State transition diagram of a job/task in the cluster

Figure 1. System framework of a cloud computing system

... ...

Web site serving

Software development

Image processing

Financial analysis

Computer aided design

Nanoscience simulation

Weather forcasting

Traffic management

Synthetic biology simulation

Request
incoming rate

Requested CPU/
memory/disk resources

Utilization level

Virtual machines

Heterogeneous
workload

Heterogeneous
workload

Physical machines

755734734734

Figure 3. Job inter-arrival time series plotted under different scales

Figure 4. Statistical moments to the fourth order of the job inter-
arrival time series

0 2 4 6 8 10

x 10
4

0

5

10

15
x 10

7

Job sequenceIn
te

r-
a

rr
iv

al
 ti

m
e

 (
 μ

s)

0 2000 4000 6000 8000 10000
0

5

10
x 10

7

Job sequenceIn
te

r-
a

rr
iv

a
l t

im
e

 (
 μ

s)

0 200 400 600 800 1000
0

5

10
x 10

7

Job sequenceIn
te

r-
a

rr
iv

a
l t

im
e

(μ
s)

The study of self-similarity property (first proposed in
[18]) in the context of computer networks, which is also
observed from the workload characteristics from the Google
cluster dataset as will be discussed in this paper, can be
traced back to [19][20], which presents the Ethernet traffic is
self-similar. The study was extended by the authors of [21]
to show that the traffic in the World Wide Web (WWW) is
also self-similar. Moreover, the self-similarity in the
topology of the Internet is analyzed in [22].

In contrast to the prior work that focus on the Google
cluster dataset, we consider a comprehensive statistical
analysis of the characteristics of the workload in a cloud
computing system and demonstrate that alpha-stable
distribution provides a good statistical model for the
distribution of the job/task duration and the resource request
per task. In addition, we exploit the compact representation
of the workload in a cloud computing system provided by
our fractal analysis to the dynamics of parameters such as the
aggregated CPU/memory requests per time slot, which can
further enable more efficient optimization strategies.

III. AN OVERVIEW OF GOOGLE CLUSTER DATASET
The Google cluster dataset [5] released in 2011 is

measured on a heterogeneous 7000-machine server cluster
on a 29-day period involving 672,075 jobs and more than 48
million tasks. The whole dataset is partitioned into six
families, namely, machine events, machine attributes, job
events, task events, task usage, and task constraints, which
covers a wide range of information regarding the server
cluster the incoming job/task sequence. The machine events
show the addition, change, and removal of machines in the
cluster, as well as the platform and available CPU/memory
resources of each machine. The machine attributes includes
other attributes that can be considered as task constraints.
The job events and task events dataset record the state
transition of each job/task (the state specification is discussed
later). And the task usage dataset contains the mean and
maximum usages of resource, i.e., CPU, memory, disk, and
I/O, of every task measured in each five-minute time interval.
Our focus in this paper will be on job-related and task-related
information.

 According to the cluster trace, a job, which contains one
or more tasks, is the minimum unit of any user request
received by the cloud. Once the job is submitted (i.e.,
received by the server cluster), however, different tasks
within it can be scheduled and executed separately among
different servers. A job finishes execution only after all its
tasks have finished executions. Jobs and tasks share the same
state transition diagram, which is shown in Fig. 2. As can be
seen from the diagram, once a job/task is submitted, it will
wait in the pending state to be scheduled to a server machine
for execution by the cluster scheduler, after which it will
enter the running state. After finishing execution, the job/task
will be put into the dead state. It will also enter the dead state
in the following cases: the job/task (i) is evicted to release
resource for other tasks with higher priority, (ii) has a failure

at execution time (or in rare cases, while pending), (iii) is
canceled by the user, or (iv) is terminated abnormally for
other reasons. A job/task in the dead state can be submitted
again if it does not finish execution earlier. Please note that
in this paper, the duration of a job/task is calculated as the
difference of the time when it enters the “submitted” state
and the time when it enters the “dead” state. Although the
jobs/tasks that are put back into the scheduling queue retain
their identifiers, we treat the resubmitted job/task the same as
a new coming one, since this kind of jobs/tasks no longer
require any attention or resource allocation from the cluster
before the resubmission happens.

IV. DYNAMIC PREDICTION METHOD AND RESULTS

To investigate the dynamics of the jobs and resource
requests arriving at the cluster, which is important for
workload profiling in a cloud computing system, and further

756735735735

develop an effective prediction method, we extract the job
inter-arrival time and the aggregated resource request from
the Google cluster trace. The job inter-arrival time sequence
is generated by processing the records in the dataset of job
events in temporal order and calculating the time difference
between one job submission and the previous one. The
aggregated CPU and memory requests of the cluster are
calculated for each five-minute time slot.

A. Complex nature of underlying processes in a cloud
computing system
As is stated earlier, the dynamics of the job arrival or the

resource requests sent to the cluster are complex and
challenging to model. For instance, the job arrival process
cannot be simply modeled as a Poisson process or other
simple stochastic processes [6]. Besides, the process exhibits
similar properties to some CPS applications in terms of self-
similarity and non-stationarity [9]. Fig. 3 shows the plot of
job inter-arrival time series under different scales (with one
hundred thousand, ten thousand, and one thousand sample
points, respectively). One can observe that the job inter-
arrival time series not only exhibits rich variability, but also
has some degree of self-similar behavior. The plots of mean
value, variance, skewness (defined as the third standardized
moment), and kurtosis (defined as the fourth standardized
moment) of different segments of the job inter-arrival time
series are shown in Fig. 4. As can be seen from the figures,
these statistical moments do not remain stable even for a
short segment in the series, which indicates that the process
cannot be characterized as stationary or quasi-stationary. The
complex behavior of the job arrival process implicates that
the process is not Gaussian and the theory of linear time-
invariant (LTI) system is not applicable to model this process.
The observed variability of higher order moments and the
self-similarity suggest that the workload in a cloud
computing system may possess a multi-fractal signature.
Consequently, we estimate the multi-fractal spectrum[23][24]
as shown in Fig. 5. One can see from the figure a wide
distribution of fractal dimensions ranging from 0.7 to 2.3

centering at around 1.05. The complex multi-fractal behavior
of the job inter-arrival time vector implies the existence of
long range dependency. In other words, the job inter-arrival
times after two different jobs have some degree of
dependence even if they have a large number of other jobs in
between.

B. Fractal modeling based prediction method
For the server cluster to know when to turn off some

servers for power saving or reserve some resource for the
imminent job incoming burst, an accurate estimation of the
number of incoming tasks and the amount of available
resources in the near future is crucial. To address the long
range memory property and the time dependent nature of the
job arrival process and the resource request, we propose a
fractional order differential equation prediction model with
time dependent parameters.

The �-th order derivative of a function ���� with any real
value �, denoted by ������ is defined as follows:

������ � 	
�� �
� � ����� � �� � ��������������
� (1)

where � � �
� and
��� is the gamma function. When � is
equal to a positive integer, Eqn. (1) will reduce to the
conventional definition and derivatives. Since we are
interested in modeling discrete sequences rather than
continuous functions, we use a binomial approximation of
Eqn. (1), which is shown as follows [25]

������ � ���	�� � �
� � ��� � ��!
�"� (2)

where ���� is the sequence we are interested in (aggregated
resource request sent to the cluster in a time slot or the time
period between two consecutive incoming jobs), and #��$’s
are binomial coefficients.

Using the fractional order derivatives as defined in Eqn.
(2), we propose the following model ���!����� � %������� & '��� (3)

where
��� , %��� , and '��� are all time-dependent
parameters. For each �, the value of ���� can be predicted
using the values of ��(� up to ��� � 	� by applying the
following steps: (i) we estimate the order of fractional
derivative,
��� , through a wavelet scaling analysis
approach inspired from [26]; (ii) a low dimension linear
regression problem is solved to find the value for parameters %��� and '��� ; (iii) By combining Eqn. (2) and (3) and
plugging in all the known values, the value of ���� is
obtained. For the purpose of reducing computation
complexity, the first few binomial term rather than the full
binomial expansion can be used to calculate the value of ������ as in Eqn. (2). By following this approach, we
construct a compact model for the workload in a cloud
computing system with few parameters.

Figure 5. Multi-fractal spectrum of the job inter-arrival time series

757736736736

Figure 7. Statistical distribution fitting for the job duration

Figure 8. Statistical distribution fitting for the task duration

10
4

10
6

10
8

10
10

10
12

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Job duration (μs)

Po
rti

on
 o

f j
ob

s
la

st
in

g
lo

ng
er

Extracted data
Gaussian distribution fitting
μ = 2.86 × 109, σ = 3.57 × 1010

Alpha stable distribution fitting
with α = 0.56, β = 0.99,
γ = 7.47 × 107, δ = 7.18 × 106

10
4

10
6

10
8

10
10

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Task duration time (μs)

Po
rti

on
 o

f t
as

ks
 la

st
in

g
lo

ng
er

Extracted data
Alpha stable distribution fitting
with α = 0.69, β = 0.71,
γ = 9.61× 106, δ = 0.52× 108

C. Prediction results and discussion
The proposed fractional differential equation method is

compared with an auto-regressive (AR) predictor [27] up to
the order of 16 as the baseline. The comparison of prediction
accuracy in terms of mean square error (MSE) is shown in
Fig. 6. The errors of the baseline predictor are normalized to
1.

For aggregated requests of CPU and memory resource,
significant improvement is achieved as can be seen from the
figure. The MSE reduction is 72% and 59% in the case of
CPU request and memory request, respectively. For the
prediction of job inter-arrival time, the proposed method
achieved 8% reduction of mean square error compared to the
AR predictor. But at some sampling points where the job
inter-arrival time is much larger (by several orders of
magnitude) than the neighboring samples, the prediction
accuracy can have significant degradation.

V. STATISTICAL DISTRIBUTION FITTING METHOD AND
RESULTS

Apart from the job inter-arrival time and aggregated
resource request of the cluster, we also extract the vector of
job duration, task duration, and resource request per task in
terms of CPU, memory, and disk storage. However, when
applying the same prediction approach proposed in Section
IV to these vectors, we cannot get accurate prediction results.
The main reason is that the dependence between different
elements in these vectors is relatively weak or too complex
to be captured by a simple fractal model, and thus the vectors
behave similarly to a series of i.i.d. random variables that are
drawn from a certain statistical distribution. Therefore,
instead of trying to design an accurate prediction method, we
turn to finding an appropriate statistical distribution that is
the most effective to fit the data. Trace extraction results
show that the job duration, the task duration, and the
resource request per task form a heavy-tailed distribution,
which means that there is no satisfactory Gaussian fitting for
them. In this paper, a general class of distributions, the
alpha-stable distribution, is adopted, which captures the

heavy-tailed nature of the empirical distribution and provides
high flexibility for statistical analysis.

A. Alpha-stable distribution
Alpha-stable distributions do not have analytically

expressible probability density functions (pdf) or cumulative
distribution functions (cdf) in the general case, but can be
characterized by the characteristic functions,)�*�, with the
form as follows)�*+
, -, ., /� � 01234*/ � 5.*5��	 � 4-678�*�9�: (4)

where

9 � ;<=8 #>
? $,
 @ 	
� ?> AB75*5 ,
 � 	 (5)

678�*� � C 	, DDDDDDDDD* E ((, * � (�	, * F ((6)

Figure 6. Comparison of prediction accuracy

CPU request Memory requestJob inter-arrival time
0

0.2

0.4

0.6

0.8

1
N

or
m

a
liz

e
d

 m
e

a
n

 s
q

ua
re

 e
rr

o
r

Proposed method
Baseline

758737737737

And the relationship between the pdf of a distribution, ����,
and its characteristic function can be expressed as follows

���� � 	?>�)�*�G�H�I�*J
�J (7)

Alpha-stable distribution represents a flexible set of
probability distributions. By properly setting the values of
the parameters
, -, ., and /, one can change the shape of
the pdf and cdf of an alpha-stable distribution. One can
observe from the characteristic function of an alpha-stable
distribution that it will reduce to some simple distributions
with some specific settings of these parameters. For instance,
when
 � ?, parameter - has no effect in Eqn. (4), and the
distribution reduces to a Gaussian distribution with the mean
of / and the variance of ?.K. The alpha-state distribution can
be reduced to long-tail distributions also. For example, in the
cases that
 � 	 , - � (, and
 � 	L? , - � 	 , the alpha-
stable distribution will reduce to the Cauchy distribution and
the Levy distribution, respectively.

B. Statistical fitting results and discussion
Please note that both the Gaussian fitting and the alpha-

stable distribution fitting are obtained through maximum
likelihood estimation (MLE).

Fig. 7 shows the distribution fitting for the job duration,
and Fig. 8 shows the distribution fitting for the task duration
performed on a segment of the whole trace containing
approximately 1.5 million tasks. The parameters of the
alpha-stable distribution are shown in the figures. As can be
seen from Fig. 7 and Fig. 8, the distributions are good fit to
the corresponding data extracted from the cluster trace. In
spite of the disparity that begins to appear when the job/task
duration grows, we can use the fitted alpha-stable
distribution to represent the real data and provide guidance
for efficient resource management policies for the server
cluster without any severe problem for the following reasons.
First, since we only use a finite number of samples to
generate the empirical survival functions, it is likely that
some rare events (i.e. jobs/tasks with extremely long
duration) are not captured in this process, and the proportion
that long lasting jobs/tasks are actually higher than that
shown in the figure, which reduces the difference between
the fitted distribution and the real data. Second, if we
generate random task durations according to the fitted
distribution to simulate the task profile in real world, the
error is within acceptable range for most of the time, since
the empirical survival function only begin to decrease
sharply around the first permille. And last but not the least,
as opposed to the Gaussian distribution fitting results, the
alpha-stable distribution fitting tends to overestimate the
proportion of long-lasting tasks, which will only result in
conservative resource management policies that do not cause
serious problems such as violations in the service level
agreement.

Fig. 9 shows the distribution fitting results for the CPU,
memory, and disk storage request per task. The Google trace

only provided the normalized values of these requests per
task. The fitting is performed on a segment of the total trace
which contains approximately 1.5 million tasks. As can be
seen from the figure, the empirical inverted cdf curve of the
resource request resource request per task is relatively
unsmooth compared to that of the job duration or the task
duration, which is because of the fact that the requested

 (a)

(b)

(c)

Figure 9. Statistical distribution fitting for resource request per task.
(a) CPU request; (b) memory request; (c) disk storage request.

10
-3

10
-2

10
-1

10
-4

10
-3

10
-2

10
-1

10
0

Normalized CPU request

P
or

tio
n

of
 ta

sk
s

re
qu

es
tin

g
m

or
e

Extracted data
Gaussian distribution fitting
μ = 0.02, σ = 0.02
Alpha stable distribution fitting
with α = 1.84, β = 1.00,
γ = 0.01, δ = 0.03

10
-4

10
-3

10
-2

10
-1

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Normalized memory request

P
or

tio
n

of
 ta

sk
s

re
qu

es
tin

g
m

or
e

Extracted data
Gaussian distribution fitting
μ = 0.02, σ = 0.02
Alpha stable distribution fitting
with α = 1.34, β = 1.00,
γ = 0.005, δ = 0.027

10
-4

10
-3

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Normalized disk storage request

P
or

tio
n

of
 ta

sk
s

re
qu

es
tin

g
m

or
e

extracted data
Gaussian distribution fitting
μ = 3.12 × 10-13, σ = 2.65 × 10-25

Alpha stable distribution fitting
with α = 1.51, β = 0.26,
γ = 1.18 × 10-4, δ = 2.78 × 10-4

759738738738

amount of resource is usually set manually by the users.
Nevertheless, the alpha-stable distribution fits the heavy tail
of the empirical survival function well. Although the
Gaussian fitting for the resource requests seems acceptable
for tasks requesting relatively small portion of resources (e.g.
0.05 unit of CPU or memory resource), it significantly
underestimate the probability that a task request for large
amount of resources, which in fact requires more attention in
order to find an appropriate machine to execute it.

VI. CONCLUSION
In this paper, we investigate some important parameters

extracted from the Google cluster dataset related to the
workload characteristics in a cloud computing system
including the job inter-arrival time, the job/task duration, the
resource request per task, and the aggregated resource
request sent to the cluster. Since no simple dynamic or
statistical model can characterize the self-similarity and non-
stationarity property that these parameters exhibit, a set of
fractal modeling techniques are applied. Based on the
prediction of the job inter-arrival time and the aggregated
resource request sent to the cluster and the estimation of
job/task duration and resource request per task in this paper,
efficient resource management techniques can be further
developed to benefit the cloud infrastructure operators.

REFERENCES
[1] R. E. Bryant, “Data-intensive supercomputing: The case for

DISC,” 2007.
[2] J. F. Gantz, “The diverse and exploding digital universe: An

updated forecast of worldwide information growth through
2011,” IDC, 2008.

[3] S. Lohr, “The age of big data.”, New York Times 11, 2012.
[4] D. Agrawal, S. Das, A. E. Abbadi, “Big data and cloud

computing: current state and future opportunities,”
In Proceedings of the 14th International Conference on
Extending Database Technology, pp.530 - 533, 2011.

[5] Google cluster data.” [Online]. Available:
https://code.google.com/p/googleclusterdata/

[6] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M.A.
Kozuch, “Heterogeneity and dynamicity of clouds at scale:
Google trace analysis,” Proceedings of the Third ACM
Symposium on Cloud Computing (SoCC '12), 2012.

[7] P. Ch. Ivanov, et al., “Scaling and universality in heart rate
variability distributions,” Physica A: Statistical Mechanics
and Its Applications, vol. 249, no. 1, pp.587 – 593,

[8] P. Bogdan, R. Marculescu, “Workload Modeling and Related
Issues for Designing Future Cyber Physical Systems,” IEEE
Design and Test of Computers, 2010.

[9] P. Bogdan, R. Marculescu, “Towards a Science of Cyber-
Physical Systems Design,” Cyber-Physical Systems (ICCPS),
2011 IEEE/ACM International Conference on , pp.99 - 108,
2011.

[10] W. Feller, An introduction to probability theory and its
applications. Vol. 2. John Wiley & Sons, 2008.

[11] D. Boyd, K. Crawford, “Six Provocations for Big Data,” A
Decade in Internet Time: Symposium on the Dynamics of the
Internet and Society, 2011.

[12] C. Lynch, “Big data: How do your data grow?” Nature, vol.
455, no. 7209, pp. 28-29, 2008.

[13] Y. Huai, R. Lee, S. Zhang, C. H. Xia, and X. Zhang, “DOT: a
matrix model for analyzing, optimizing and deploying
software for big data analytics in distributed systems,”
In Proceedings of the 2nd ACM Symposium on Cloud
Computing (SOCC '11), 2011.

[14] M. Lu, L. Zhang, H. P. Huynh, Z. Ong, Y. Liang, B. He, R. S.
M. Goh, R. Huynh, “Optimizing the MapReduce framework
on Intel Xeon Phi coprocessor,” 2013 IEEE International
Conference on Big Data, pp.125 - 130, 2013.

[15] S. Di, D. Kondo, W. Cirne, “Characterization and
Comparison of Cloud versus Grid Workloads,” 2012 IEEE
International Conference on Cluster Computing (CLUSTER),
pp.230 - 238, 2012.

[16] Z. Liu, S. Cho, “Characterizing Machines and Workloads on a
Google Cluster,” 2012 41st International Conference
on Parallel Processing Workshops (ICPPW), pp.397 - 403,
2012.

[17] Q. Zhang, M. F. Zhani, S. Zhang, Q. Zhu, R. Boutaba, and J.
L. Hellerstein, “Dynamic energy-aware capacity provisioning
for cloud computing environments,” In Proceedings of the 9th
international conference on Autonomic computing(ICAC '12),
pp.145 - 154, 2012.

[18] B. B. Mandelbrot and J. W. Van Ness, “Fractional Brownian
motions, fractional noises and applications,” SIAM Review,
vol. 10, pp. 422 - 437, 1968.

[19] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson,
“On the self-similar nature of Ethernet traffic,” In
Proceedings on Communications architectures, protocols and
applications (SIGCOMM '93), pp. 183 - 193, 1993.

[20] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson,
“On the self-similar nature of Ethernet traffic (extended
version),” Networking, IEEE/ACM Transactions on , vol.2,
no.1, pp.1,15, 1994.

[21] M. E. Crovella, and A. Bestavros, “Self-similarity in World
Wide Web traffic: evidence and possible
causes,” Networking, IEEE/ACM Transactions on , vol.5,
no.6, pp.835 - 846, 1997.

[22] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law
relationships of the Internet topology,” In Proceedings of the
conference on Applications, technologies, architectures, and
protocols for computer communication (SIGCOMM '99), pp.
251 - 262, 1999.

[23] B. B. Mandelbrot, A. Aharony, and J. Feder, Fractals in
Physics: Essays in Honour of Benoit B. Mandelbrot :
Proceedings of the International Conference Honouring
Benoit B. Mandelbrot on His 65th Birthday, Elsevier, 1990.

[24] “FracLab.” [Online]. Available: http://fraclab.saclay.inria.fr/
[25] I. Petráš, Fractional-Order Nonlinear Systems: Modeling,

Analysis and Simulation, Springer, 2011.
[26] B. Whitcher, M.J. Jensen, “Wavelet estimation of a local long

memory parameter,” Exploration Geophysics, pp.94 - 103,
2000.

[27] E. J. Hannan, Multiple time series, Wiley, 1970

760739739739

