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Abstract-In this paper, we propose a new approach for robust 
compressive sensing (eS) using memristor crossbars that are constructed 
by recently invented memristor devices. The exciting features of a 
memristor crossbar, such as high density, low power and great scalability, 
make it a promising candidate to perform large-scale matrix operations. 
To apply memristor crossbars to solve a robust es problem, the 
alternating directions method of multipliers (ADMM) is employed to split 
the original problem into subproblems that involve the solution of systems 
of linear equations. A system of linear equations can then be solved 
using memristor crossbars with astonishing 0(1) time complexity. We 
also study the impact of hardware variations on the memristor crossbar 
based es solver from both theoretical and practical points of view. The 
resulting overall complexity is given by O(n), which achieves 0(n2 .5 ) 

speed-up compared to the state-of-the-art software approach. Numerical 
results are provided to iIIustrate the effectiveness of the proposed es 
solver. 

Keywords-Memristor crossbars, sparsity, compressive sensing, alter­
nating direction method of multipliers, signal processing hardware. 

I. INTRODUCTION 

Compressive sensing (CS) has received a great deal of attention 
over the past decade, and has achieved tremendous success in a 
wide range of applications such as medical imaging, radar, spectrum 
sensing, and data gathering from large wireless sensor networks [1]. 
CS attempts to perform sampling and compression simultaneously, 
and under mild conditions, allows the recovery of a high dimensional 
sparse signal from low dimensional (noiseless or noisy) observations 
[2]. In [3], [4], it was established that exact recovery of sparse 
signals from noiseless observations is possible using simple linear 
programming (LP) which yields O(n3 ) complexity, where n is the 
dimension of the signal to be recovered. In order to improve the 
computational efficiency, subspace pursuit [5] and expander graph 
[6] based methods were proposed for exact recovery with complexity 
O(n) ~ O(n2 ). However, when the measurements are noisy, signal 
recovery from imperfect measurements (also known as robust CS 
[7]) becomes involved, and requires the solution of a special instance 
of a second-order cone program (SOCP) [2]. This leads to a higher 
computational complexity O(n35 ) than that of LP [8]. In this paper, 
we aim to develop an ultra-efficient sol ver for robust CS. 

Previous research efforts [1]- [7] focused on software-based ap­
proaches for sparse signal recovery, with the support of CPUs. 
However, the conventional implementation of CS algorithms running 
on CPUs suffers from limited scalability due to the relatively high 
computational complexity and memory requirements, which thereby 
limits the applicability of CS solutions to big data problems. There­
fore, it is attractive to design a low-complexity and ultra-efficient 
hardware architecture for CS algorithms. Beyond traditional CMOS 
designs, this paper utilizes memristor crossbars (one type of non­
volatile memory device) to achieve significant speed-up for robust 
CS compared to the state-of-the-art software approach. 

The memristor was recently invented by HP Labs [9] and has 
received significant attention as a potential building block for neu-
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romorphic computing systems [10], based on its unique property 
to change and record its own state. Memristors offer the ability 
to construct a dense, continuously programmable, and reasonably 
accurate cross-point array architecture, known as memristor crossbar 
[11]. It has be shown in [12] that a memristor crossbar can be 
utilized to effectively perform matrix-vector multiplications and solve 
a system of linear equations with an astonishing 0(1) complexity. 
The computational merit of memristor crossbars has been stressed in 
various applications such as linear sol vers [12], dictionary learning 
[13], autoencoder [14], and unsupervised learning [15]. 

In this work, we propose a low-complexity and ultra-efficient 
memristor-based CS sol ver. In spite of its computational advantages, 
there exist two challenges from the perspective of hardware imple­
mentation. First, the memristor crossbar can only perform computa­
tions involving square matrices with nonnegative entries, since the 
memristance is always nonnegative. Second, the memristor crossbar 
suffers from hardware variations, which degrade the accuracy of 
CS solutions. To the best of our knowledge, it is the first time that 
memristors are being used for CS, and the aforementioned hardware 
obstacles are addressed from the perspective of algorithm-hardware 
co-optimization. 

The major contributions of this paper are two folds. First, we 
successfully implement memristor crossbars to solve robust CS prob­
lems with the help of an operator splitting method, the alternating 
directions method of multipliers (ADMM). The advantage of ADMM 
is that we are able to extract subproblems that involve the solution 
of systems of linear equations from the solution of robust CS. 
Memristor crossbars can then be utilized to design the required 
linear sol ver. This is different from the literature [14], [15] , where 
memristor crossbars were recently adopted for implementing the 
gradient descent algorithm. Second, we propose an efficient method 
to construct a valid memristor conductance matrix by eliminating 
its negative entries without loss of performance. We also show that 
the proposed memristor crossbar based CS sol ver is quite robust to 
hardware variations and achieves O(n2 .5 ) speed-up compared to the 
conventional SOCP running on CPUs. 

II. PRELIMINARIES: ROBUST CS AND MEMRISTOR CROSSBAR 

In this section, we briefly introduce the problem of robust 
compressive sensing and the utility of memristor crossbars. 

A. Robust es 
Let x . E ]Rn be a sparse or compressible vector (e.g., a digital 

signal or image) to be recovered. We have access to measurements 
y E ]Rm via 

y = Ax. + v , (1) 

where A E ]Rmx n is a given measurement matrix (e.g., random 
Gaussian matrix), v is a stochastic or deterministic error term with 
bounded energy II v l1 2 :::; E, and 11 . 11 2 denotes the f 2 norm of a 
vector. Here we focus on the scenario in which m « n, rendering 
A non-invertible. 
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The major task of robust es is to stably recover the unknown 
sparse signal x . from the noisy measurements y. It has been shown 
in [16] that a stable recovery can be achieved in polynomial time by 
solving the convex optimization problem 

minimize 
subject to 

Il xlh 
II Ax - Yl1 2 ::; E, 

(2) 

where x E lRn is the optimization variable, and 11 . 11 1 denotes the f\ 
norm of a vector. We note that problem (2) is a special instance of 
a second order co ne program [17], which is typically solved by the 
interior-point algorithm [2]. 

B. Memristor Crossbar 

A Memristor has the unique property to be able to record the 
historical profile of the excitations on the device. More specifically, 
the state (memristance) of a memristor will change when a certain 
voltage higher than a threshold voltage is applied at its two terminals. 
Otherwise, the memristor behaves like a resistor. This unique property 
makes it an ideal candidate for non-volatile memory and matrix 
computations [18] , [19]. Physical memristors can be fabricated in 
a high density grid, known as a crossbar [11]. 

:~~:"~~J~:::~ 
VI I:',:r~ ~~ :M:::ti 

. ...... . . : . . . . . 

Vo 

Fig. 1: A memristor crossbar. 

A typical N x N memristor crossbar is iIIustrated in Fig. 1, where 
a memristor is connected between each pair of horizontal word­
line (WL) and vertical bit-line (BL) [20]. This structure could be 
implemented with a small footprint and is capable of re-programming 
each memristor to different resistance states by properly applying 
biasing voltages at its two terminals [21] , [22]. To demonstrate the 
matrix computation functionality, we apply a vector of input voltages 
VI on WLs and collect the current through each BL by measuring the 
voltage across resistor T8 with conductance of g8' Assume that the 
memristor at the connection between WLi and BLj has a conductance 
of gi,j . Then the output voltages can be represented by 

Vo = CVI , (3) 

where C E lRN x N is determined by the conductance of memristors 
(g8 and {gi,j }); see [20, Eq. 5]. It is c1ear from (3) that a programmed 
memristor crossbar (with certain conductance matrix C) can be used 
to perform matrix-vector multiplication with a constant-time com­
plexity 0(1). Note that the entries of C are restricted to nonnegative 
values. 
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As the reverse operation, the memristor crossbar can be used to 
solve a system of linear equations. A voltage vector Vo is applied on 
each T s of BL, and the resulting current ftow through each BL can be 
approximated as 10,j = g8VO ,j . On the other hand, the current 10,j 
through BLj can also be calculated as 10 ,j = ~i Vi ,igi, j. Hence, for 
each BLj , equation VO,j = (1 / g8 ) ~i Vi ,igi,j is mapped. Namely, 
the system of linear equations (3) is mapped back to the memristor 
crossbar, where the solution VI can be determined by measuring 
voltages on the WLs. This implies that the memristor crossbar can 
be used as a linear sol ver under the conditions that C is a square 
matrix with non negative entries. 

III. MEMRISTOR eROSSBAR BASED ROBUST es VIA ADMM 

The key step to successfully apply memristor crossbars into es is 
to extract subproblems that solve systems of linear equations leading 
to the solution of the es problem. In this section, we will show 
that ADMM provides a suitable optimization framework to effectively 
split problem (2) into a sequence of subproblems that require the 
solution of systems of linear equations. 

We begin by reformulating problem (2) in a way that lends itself 
to the application of ADMM, 

minimize Ilwlh + Ll (U) + L2(X, S) 
subject to x - w = 0 , s - U = 0, 

(4) 

where x E lRn , w E lRn , U E lRm and S E lRm are optimization 
variables, and LI and L2 are indicator functions corresponding to 
constraints of problem (2), namely, 

and 

Ll(U) = {ooo Il u11 2::; E (5) 
otherwise, 

Ax - s -y = ° 
otherwise. (6) 

As will be evident later, the newly introduced optimization variables 
w, U and s together with the indicator functions (5) - (6) in (4) help 
to extract the character of f'I norm, Euclidean ball constraint, and 
linear equality constraints from the original problem (2). 

ADMM is performed based on the augmented Lagrangian [23] 
of problem (4), which is given by 

L:(x, s, w, u, J,L , v) = Il wlh + LI (u) + L2(X, s) + J,LT (x - w) 
+ ~ ll x - w ll ~ + v T(s - u) + ~ ll s - u ll ~ , (7) 

where J,L and v are Lagrangian multipliers (also known as dual 
variables), and p > ° is a given regularization parameter associated 
with quadratic augmented terms. 

ADMM iteratively executes the following three steps [23] for 
iteration k = 1, 2, ... 

(8) 
x ,s 

w ,u 

J,Lk+l = J,Lk + p(Xk+1 _ w k+1) , Vk+1 = v k + p(Sk+l _ Uk+1) , 

until the stopping conditions are satisfied, Il xk _ w k 11 2+ Iisk _ u k 11 2 ::; 
~ and Il xk+1 _ x k 11 2 + Ilsk+1 - sk 11 2 ::; ~, where ~ is a given stopping 
tolerance parameter. 

We emphasize that the crucial property of ADMM is that, as we 
demonstrate in the rest of this section, the solution of problem (8) can 
be found by using memristor crossbars with low complexity, and the 
solution of problem (9) only involves elementary vector operations. 



A. Memristor-based solution to problem (8) 

After completing squares with respect to x and s in (7), problem 
(8) becomes 

minimize 
x ,s (10) 

subject to Ax - s = y , 

where a := w k - (l / p)JLk, and b := u k - (l / p)vk. 

The optimality condition of problem (10) can be obtained by 
setting the first-order derivative of the Lagrangian function of problem 
(10) equal to zero. This yields 

px + ATA = pa, ps - A = pb , Ax - S = y, (11) 

where A E ]Rm is the Lagrangian multiplier. From (11), the solution 
of problem (10) is then given by 

[P1n &: ~~] [~] ~] ,= Cz ~ cl, (12) 

where In denotes an identity matrix of size n, Z := [xT , ST, ATf 
is the vector of primal and dual variables of problem (10), and d := 
[paT , pbT , yTf . In (12), C corresponds to the coefficient matrix 
of the left equation, which is invertible (due to the theory of Schur 
complement) and is independent of the ADMM iteration. 

Note that the analytical solution of (12) is given by Z = C - ld, 
which requires 0(n3 ) arithmetic operations due to the presence of 
matrix inversion. To furt her reduce the computational complexity, a 
memristor crossbar could be utilized to solve (12) by configuring 
memristance values according to the matrix C and applying d at 
the output of the memristor crossbar in Fig. 1. Since there may exist 
negative entries in C, in what follows we propose a novel matrix 
representation that eliminates those negative entries and maintains 
valid memristance values. 

By introducing auxiliary variables Z, we rewrite (12) as the 
following system of linear equations 

(l3) 

where Z E ]Rn , Ti is the number of columns of C that contain negative 
elements, (x)+ = max{O,x} is a positive operator defined in an 
elementwise fashion for a matrix argument, B E ]Rn x n is a submatrix 
of (- C)+ after the columns of all zeros are removed, D E ]Rnx n 

is a submatrix of In after the rows, indexed by the columns of C 
that only contain nonnegative elements, are removed, and On is a 
zero vector of size Ti . We note that if Ti = 0, the linear system (l3) 
reduces to (12). 

For ease of notation, we define Q := [(~+ ~]. We illustrate 

the construction of Q through the following example with n = 3, 

[ 
2 - 0.1 0.1] [ 2 0 0.1] 

C = - 0.1 2 0.1 =? (C)+ = 0 2 0 .1 
0.1 0.1 2 0.1 0.1 2 

(-C)' ~ [O:1 °f~] B ~ [O:1 °f],D ~ [~ ~ ~l , 

'. ~ [~ ~l, Q ~ [{ O~1 ~~: O~1 II (14) 
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Based on (13), we can configure the memristance values (accord­
ing to Q) and utili ze the memristor crossbar to obtain the solution of 
problem (8). As demonstrated in Sec.II-B, a programmed memristor 
crossbar only requires a constant-time complexity 0(1) to solve a 
system of linear equations. 

B. Solution to problem (9) 

After completing squares with respect to wand u in (7), problem 
(9) becomes 

minimize 
w ,u 

Il w ll l + :leu) + ~ ll w - p ll ~ + ~ ll u - q ll ~ , (15) 

where p := X k+ l + (1 / p)JLk and q := AXk+ l - y + (1 / p)vk . 

Problem (15) can be further decomposed into two subproblems 

minimize Il w ll l + ~ ll w - p ll ~ , (16) 

and 

minimize Il u - q11 3, subject to II u l1 2 S; E. (17) 

The solution to problem (16) is given by the soft thresholding 
operator [24] 

w = (p - l / pl)+ - (- p - l /pl)+ , (18) 

where 1 E ]Rn is a vector of all ones. 

The solution of problem (17) is given by projecting q onto an 
Euclidean ball, 

(19) 

We remark that the difficulty of hardware-based calculation of 
(18) - (19) lies in calculating the e2-norm of a vector, which can be 
realized using peripheral circuits including analog multipliers and 
summing amplifiers in the analog domain [25], [26]. Or we can 
convert the vector to the digital domain and then calculate its norm. 

Following (8) and (9), the solution of robust CS is readily obtained 
by using memristor crossbars and elementary hardware-based vector 
computations. In the next section, we will elaborate on the algorithm 
complexity and the impact of hardware variations on the memristor­
based CS solution. 

IV. COMPUTATIONAL COMPLEXITY AND DEVICE VARIATIONS 

ADMM has a linear convergence rate O(l / k) for general convex 
optimization problems [27] , where k is the number of iterations. In 
other words, given the stopping tolerance~ , ADMM requires 0(1/ 0 
iterations to converge. However, it is often the case that ADMM 
converges faster to provide modest accuracy that is sufficient for many 
applications [23], [24] , [28]- [30]. At each iteration of ADMM, the 
computational complexity is approximated by O(n) , where we obtain 
a) 0(1) complexity by utili zing memristor crossbars to solve a system 
of linear equations (l3), and b) O( n) complexity for vector operations 
in (18) and (19). In the big data context with large n, the memristor 
crossbar based CS solver yields the complexity O(n). Compared 
to the software approach, e.g. , SOCP with complexity 0(n3 .5 ) , the 
proposed sol ver achieves 0(n2 .5 ) speed-up. 

The hardware design of the proposed memristor crossbar-based 
robust CS sol ver also exhibits relatively low complexity, and mainly 
consists of two parts. The first part is the memristor crossbar-based 
linear system sol ver to solve problem (8), in which only a single 
memristor crossbar is needed. The second part is the digital (or 



analog) circuit-based sol ver of problem (9), which uses a multiplier, 
an accumulator, and a divider when solving iteratively in the digital 
domain. In addition, the updating of dual variables {tk+ 1 and 1'k+ 1 

involves standard additionlsubtraction calculations in digital or analog 
domains. We stress that the solution framework exhibits low hardware 
complexity because only one memristor crossbar is required. 

It is known from [l3] that the memory devices relying on the 
ionldefects motion typically show noticeable device variations from 
cell-to-cell and from cycle-to-cycle. Therefore, to turn the memristor 
cross bar based es framework into real-life applications, we face the 
following obstacle. The presence of hardware variations leads to a 
reduced reading accuracy of Q configured in memristor cross bar 
arrays, where Q is introduced in (14). As a result, the matrix used in 
ADMM is actually modified to Q = Q + T~, where T~ represents 
the hardware variation, T governs the variation strength, and ~ is 
T-dependent. Based on Taylor series expansion, we obtain that 

(20) 

which holds when T is a small number. It is c1ear from (20) that 
the matrix inversion Q - 1 is valid when the hardware variation does 
not dominate the matrix Q. It is often the case that T is small since 
(II Q - QIIF/IIQIIF) is typically less than 5% ~ 10%, where II · IIF 
denotes the Frobenius norm of a matrix. Our numerical results in the 
next section will show that although there exists a slight decrease of 
recovery accuracy, the obtained sparse support (i.e., sparsity pattern) 
of the signal of interest is almost the same for different levels of 
hardware variations. 

Y. NUMERICAL RESULTS 

In this section, we consider a sparse signal x . of length n = 1024 
with s nonzero entries. These s nonzero spike positions are chosen 
randomly, and their values are chosen independently from the standard 
normal distribution. To specify the observation model (2), we consider 
m = 300 and generate a random m x n matrix A with i.i.d. entries 
from the standard normal distribution. The vector of measurement 
noises v is drawn from the Gaussian distribution N(O , 0-21) , where 
0- = 0.01. The accuracy tolerance E is set to E2 = 0-2(m + 2v'2ffi), 
which provides a Iikely upper bound on II vl1 2 [31]. We adopt Il x -
x.112 (averaged over 50 numerical trials) to measure the accuracy 
of the recovered sparse signal. The ADMM parameters are set to 
~ = 10- 3 and p = 10. 

In Fig.2, we present the error in sparse signal recovery as a 
function of signal sparsity s for different levels of hardware variations. 
We recall from (20) that (II Q - QII F/ II QII F) provides the level of 
hardware variations. For comparison, we also employ the commonly­
used orthogonal matching pursuit (OMP) algorithm [32] (MATLAB 
toolbox designed by [33]) to recover the sparse signal x • . In both 
ADMM and OMP, we set the maximum number of iterations as 
1000. We observe that the recovery accuracy improves as s decreases 
(namely, the number of nonzero entries in the sparse signal decreases). 
This is not surprising, since the sparsity prior plays a key role in 
stable signal recovery at a rate much smaller than wh at is commonly 
prescribed by Shannon-Nyquist [2]. We also note that the recovery 
accuracy of using the memristor-based es sol ver is comparable to 
that of using OMP even in the presence of hardware variations. By 
fixing s, we see that the recovery accuracy decreases while increasing 
the level of hardware variations. To c1early show the performance 
loss, in Fig.3 we compare the recovered signal under 0% or 5% 
hardware variation with the original sparse signal to be recovered 
when s = 105. elearly, the recovered signal yields almost the same 
sparse support as that of the original signal even if there exists 5% 

1136 

0.9 

0.8 

c:- 0.7 

~ 8 0.6 
~ 
1ii 0.5 
c: 

~04 
'0 e 0 3 
w 

0.2 

0.1 

o 

20 

~ Orthogonal matching pursuit (OMP) 
--e-- Our appraoch: No hardware varialion 
--A- Our approach: 1 % hardware variatior 
-e-- Our approach: 3% hardware variatior 
-+ Our approach: 5% hardware variatior 

40 6 0 80 100 120 

Sparsity level , 5 

140 160 

Fig. 2: Recovery accuracy versus signal sparsity s for different levels of 
hardware variations. 

hardware variation. The promising results show that the memristor­
based es sol ver is quite robust to hardware variations, and is able to 
provide reliable signal recovery performance compared to the original 
sparse signal and the software solution. 
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Fig. 3: Recovered signals versus original sparse signal for different levels of 
hardware variations. 

VI. eONCLUSION 

In this paper, we have developed a novel es framework using 
memristor crossbars, To be more specific, we first employed ADMM 
to extract systems of linear equations from the solution of robust 
es problems. A mernristor crossbar array is then utilized to solve 
the resulting linear equations with astonishing 0(1) time complexity. 
Moreover, we elaborated on the impact of device variations on the 
memristor-based es sol ver. We demonstrated that the proposed es 
sol ver is robust to hardware variations and achieves 0(n25 ) speed­
up compared to the conventional software approach. In future work, 
we would like to develop a unified mernristor-based es sol ver that 
addresses the problem of robust es as well as I-bit es. We also 
would like to develop a real hardware system on chip for es using 
mernristor devices. 



REFERENCES 

[1] S. Qaisar, R. M. Bilal , W. Iqbal, M. Naureen, and S. Lee, "Compressive 
sensing: From theory to applications, a survey," Journal of Communi­
cations and Networks, vol. 15, no. 5, pp. 443-456, Oct. 2013. 

[2] E. Candes, J. Romberg, and T. Tao, "Stable signal recovery from 
incomplete and inaccurate measurements," Comm. Pure and Applied 
Math., vol. 59, no. 8, pp. 1207- 1223, 2006. 

[3] D. L. Donoho, "Compressed sensing," IEEE Transactions on Informa­
tion Theory, vol. 52, no. 4, pp. 1289-1306, April 2006. 

[4] E. J. Candes, J. Romberg, and T. Tao, "Robust uncertainty principles: 
exact signal reconstruction from highly incomplete frequency informa­
tion," IEEE Transactions on Information Theory, vol. 52, no. 2, pp. 
489-509, Feb. 2006. 

[5] W. Dai and O. Milenkovic, "Subspace pursuit for compressive sensing 
signal reconstruction," IEEE Transactions on Information Theory, vol. 
55, no. 5, pp. 2230-2249, May 2009. 

[6] W. Xu and B. Hassibi, "Efficient compressive sensing with deterministic 
guarantees using expander graphs," in Information Theory Workshop, 
2007. ITW '07. IEEE, Sept. 2007, pp. 414-419. 

[7] E. J. Candes and M. B. Wakin, "An introduction to compressive 
sampling," IEEE Signal Processing Magazine , vol. 25, no. 2, pp. 21-30, 
March 2008. 

[8] A. Nemirovski , "Interior point polynomial time methods in convex 
programming," 2012 [Online] , Available: http://www2.isye.gatech.edul 
~nemirovsILect-'PM.pdf· 

[9] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, "The 
missing mernristor found," Nature, vol. 453, no. 7191, pp. 80- 83, 05 
2008. 

[10] D. Chabi, W. Zhao, D. Querlioz, and J. O. Klein, "Robust neural logic 
block (nlb) based on mernristor crossbar array," in 2011 IEEEIACM 
International Symposium on Nanoscale Architectures, June 2011, pp. 
137- 143. 

[11] S. H. Jo, K.-H. Kim, and W. Lu, "High-density crossbar arrays based 
on a si memristive system," Nano Leiters, vol. 9, no. 2, pp. 870-874, 
2009. 

[12] I. Richter, K. Pas, X. Guo, R. Patel, J. Liu, E. Ipek, and E. G. Friedman, 
"Mernristive accelerator for extreme scale linear sol vers," 2015. 

[13] P. Y. Chen, D. Kadetotad, Z. Xu, A. Mohanty, B. Lin, J. Ye, S. Vrudhula, 
J. S. Seo, Y. Cao, and S. Yu, "Technology-design co-optimization of 
resistive cross-point array for accelerati ng learning algorithms on chip," 
in Proc. 2015 Design, Automation Test in Europe Conference Exhibition 
(DATE), March 2015, pp. 854-859. 

[14] B. Li, Y. Wang, Y. Wang, Y. Chen, and H. Yang, "Training itself: 
Mixed-signal training acceleration for mernri stor-based neural network," 
in 2014 19th Asia and South Pacific Design Automation Conference 
(ASP-DAC) , Jan 2014, pp. 361- 366. 

[15] L. Chen, C. Li , T. Huang, Y. Chen, and X. Wang, "Mernristor 
crossbar-based unsupervised image learning," Neural Computing and 
Applications, vol. 25, no. 2, pp. 393-400, 2014. 

[16] E. Candes, "Compressive sampling," in Proc. International Congress 
of Mathematicians , 2006. 

[17] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge 
University Press, Cambridge, 2004. 

[18] S. H. Jo, T. Chang, 1. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu, 
"Nanoscale mernristor device as synapse in neuromorphic systems," 
Nano Leiters, vol. 10, no. 4, pp. 1297- 1301, 2010. 

[19] M. Di Ventra, Y. V. Pershin, and L. O. Chua, "Circuit elements with 
memory: Mernristors, memcapacitors, and meminductors," Proceedings 
of the IEEE, vol. 97, no. 10, pp. 1717- 1724, Oct. 2009. 

[20] M. Hu, H. Li, Q. Wu, G. S. Rose, and Y. Chen, "Mernristor crossbar 
based hardware realization of bsb recall function," in Proc. The 2012 
International Joint Conference on Neural Networks (lJCNN), June 
2012, pp. 1- 7. 

[21] A. Heittmann and T. G. Noll , "Limits of writing multivalued resistances 
in passive nanoelectronic crossbars used in neuromorphic circuits," in 
Proceedings of the Great Lakes Symposium on VLSI, 2012, pp. 227-
232. 

[22] D. Kadetotad, Z. Xu, A. Mohanty, P.- Y. Chen, B. Lin, J. Ye, S. Vrud­
hula, S. Yu, Y. Cao, and J. Seo, "Neurophysics-inspired parallel 
architecture with resistive crosspoint array for dictionary leaming," in 

1137 

Proc. IEEE Biomedical Circuits and Systems Conference (BioCAS) , Oct 
2014, pp. 536-539. 

[23] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, "Distributed 
optimization and statisticalleaming via the alternating direction method 
of multipliers," Foundations and Trends in Machine Learning, vol. 3, 
no. 1, pp. 1- 122, 2011. 

[24] N. Parikh and S. Boyd, "Proximal algorithms," Foundations and Trends 
in Optimization, vol. 1, no. 3, pp. 123-231,2013. 

[25] M. Hu, H. Li, Y. Chen, Q. Wu, and G. S. Rose, "Bsb training scheme 
implementation on mernristor-based circuit," in Proc. IEEE Symposium 
on Computational Intelligence for Security and Defense Applications 
(CISDA), April 2013, pp. 80-87. 

[26] W. Wen, C. R. Wu, X. Hu, B. Liu, T. Y. Ho, X. Li , and Y. Chen, "An eda 
framework for large scale hybrid neuromorphic computing systems," in 
Proc. 52nd ACMIEDACIIEEE Design Automation Conference (DAC), 
June 2015, pp. 1- 6. 

[27] B. He and X. Yuan, "On the O(l/n) convergence rate of the douglas­
rachford alternating direction method," SIAM Journal on Numerical 
Analysis, vol. 50, no. 2, pp. 700-709, 2012. 

[28] S. Liu, S. Kar, M. Fardad, and P. K. Varshney, "Sparsity-aware sensor 
collaboration for linear coherent estimation," IEEE Transactions on 
Signal Processing, vol. 63, no. 10, pp. 2582- 2596, May 2015. 

[29] S. Liu, M. Fardad, E. Masazade, and P. K. Varshney, "Optimal periodic 
sensor scheduling in networks of dynamical systems," IEEE Trans. 
Signal Process., vol. 62, no. 12, pp. 3055- 3068, June 2014. 

[30] F. Lin, M. Fardad, and M. R. Jovanovic, "Augmented lagrangian 
approach to design of structured optimal state feedback gains," IEEE 
Transactions on Automatie Control, vol. 56, no. 12, pp. 2923- 2929, 
Dec. 2011. 

[31] E. Candes, M. Wakin, and S. Boyd, "Enhancing sparsity by reweighted 
Cl minimization," Journal of Fourier Analysis and Applications, vol. 
14, pp. 877- 905, 2008. 

[32] J. A. Tropp and A. C. Gilbert, "Signal recovery from random measure­
ments via orthogonal matching pursuit," IEEE Trans. lnf. Theor. , vol. 
53, no. 12, pp. 4655-4666, 2007. 

[33] S. Becker, "Cosamp and omp for sparse recovery," 
hltps:llwww.mathworks.comlmatlabcentralljileexchange/32402-cosamp­
and-omp-for-sparse-recovery/contentIOMPm, Aug. 2011. 


