
ULTRA-FAST ROBUST COMPRESSIVE SENSING BASED ON MEMRISTOR CROSSBARS

Sijia Liut Ao Ren+ Yanzhi Wang+ Pramod K. Varshney+

t Department of EECS, University of Michigan, Ann Arbor, MI 48109, USA
:l:Department of EECS, Syracuse University, Syracuse, NY 13244, USA

tlsjxjtu@umich.edu :I: {aren, ywang393, varshney}@syr.edu

Abstract-In this paper, we propose a new approach for robust
compressive sensing (eS) using memristor crossbars that are constructed
by recently invented memristor devices. The exciting features of a
memristor crossbar, such as high density, low power and great scalability,
make it a promising candidate to perform large-scale matrix operations.
To apply memristor crossbars to solve a robust es problem, the
alternating directions method of multipliers (ADMM) is employed to split
the original problem into subproblems that involve the solution of systems
of linear equations. A system of linear equations can then be solved
using memristor crossbars with astonishing 0(1) time complexity. We
also study the impact of hardware variations on the memristor crossbar
based es solver from both theoretical and practical points of view. The
resulting overall complexity is given by O(n), which achieves 0(n2 .5)

speed-up compared to the state-of-the-art software approach. Numerical
results are provided to iIIustrate the effectiveness of the proposed es
solver.

Keywords-Memristor crossbars, sparsity, compressive sensing, alter­
nating direction method of multipliers, signal processing hardware.

I. INTRODUCTION

Compressive sensing (CS) has received a great deal of attention
over the past decade, and has achieved tremendous success in a
wide range of applications such as medical imaging, radar, spectrum
sensing, and data gathering from large wireless sensor networks [1].
CS attempts to perform sampling and compression simultaneously,
and under mild conditions, allows the recovery of a high dimensional
sparse signal from low dimensional (noiseless or noisy) observations
[2]. In [3], [4], it was established that exact recovery of sparse
signals from noiseless observations is possible using simple linear
programming (LP) which yields O(n3) complexity, where n is the
dimension of the signal to be recovered. In order to improve the
computational efficiency, subspace pursuit [5] and expander graph
[6] based methods were proposed for exact recovery with complexity
O(n) ~ O(n2). However, when the measurements are noisy, signal
recovery from imperfect measurements (also known as robust CS
[7]) becomes involved, and requires the solution of a special instance
of a second-order cone program (SOCP) [2]. This leads to a higher
computational complexity O(n35) than that of LP [8]. In this paper,
we aim to develop an ultra-efficient sol ver for robust CS.

Previous research efforts [1]- [7] focused on software-based ap­
proaches for sparse signal recovery, with the support of CPUs.
However, the conventional implementation of CS algorithms running
on CPUs suffers from limited scalability due to the relatively high
computational complexity and memory requirements, which thereby
limits the applicability of CS solutions to big data problems. There­
fore, it is attractive to design a low-complexity and ultra-efficient
hardware architecture for CS algorithms. Beyond traditional CMOS
designs, this paper utilizes memristor crossbars (one type of non­
volatile memory device) to achieve significant speed-up for robust
CS compared to the state-of-the-art software approach.

The memristor was recently invented by HP Labs [9] and has
received significant attention as a potential building block for neu-

S. Liu was with Syracuse University. Now he is with University of
Michigan. This work was supported in part by ARO grant number W911NF-
14-1-0339 and NSF CCF·1637559.

978-1-5090-4117-6/17/$31.00 © 2017 IEEE 1133

romorphic computing systems [10], based on its unique property
to change and record its own state. Memristors offer the ability
to construct a dense, continuously programmable, and reasonably
accurate cross-point array architecture, known as memristor crossbar
[11]. It has be shown in [12] that a memristor crossbar can be
utilized to effectively perform matrix-vector multiplications and solve
a system of linear equations with an astonishing 0(1) complexity.
The computational merit of memristor crossbars has been stressed in
various applications such as linear sol vers [12], dictionary learning
[13], autoencoder [14], and unsupervised learning [15].

In this work, we propose a low-complexity and ultra-efficient
memristor-based CS sol ver. In spite of its computational advantages,
there exist two challenges from the perspective of hardware imple­
mentation. First, the memristor crossbar can only perform computa­
tions involving square matrices with nonnegative entries, since the
memristance is always nonnegative. Second, the memristor crossbar
suffers from hardware variations, which degrade the accuracy of
CS solutions. To the best of our knowledge, it is the first time that
memristors are being used for CS, and the aforementioned hardware
obstacles are addressed from the perspective of algorithm-hardware
co-optimization.

The major contributions of this paper are two folds. First, we
successfully implement memristor crossbars to solve robust CS prob­
lems with the help of an operator splitting method, the alternating
directions method of multipliers (ADMM). The advantage of ADMM
is that we are able to extract subproblems that involve the solution
of systems of linear equations from the solution of robust CS.
Memristor crossbars can then be utilized to design the required
linear sol ver. This is different from the literature [14], [15] , where
memristor crossbars were recently adopted for implementing the
gradient descent algorithm. Second, we propose an efficient method
to construct a valid memristor conductance matrix by eliminating
its negative entries without loss of performance. We also show that
the proposed memristor crossbar based CS sol ver is quite robust to
hardware variations and achieves O(n2 .5) speed-up compared to the
conventional SOCP running on CPUs.

II. PRELIMINARIES: ROBUST CS AND MEMRISTOR CROSSBAR

In this section, we briefly introduce the problem of robust
compressive sensing and the utility of memristor crossbars.

A. Robust es
Let x . E]Rn be a sparse or compressible vector (e.g., a digital

signal or image) to be recovered. We have access to measurements
y E]Rm via

y = Ax. + v , (1)

where A E]Rmx n is a given measurement matrix (e.g., random
Gaussian matrix), v is a stochastic or deterministic error term with
bounded energy II v l1 2 :::; E, and 11 . 11 2 denotes the f 2 norm of a
vector. Here we focus on the scenario in which m « n, rendering
A non-invertible.

ICASSP2017

The major task of robust es is to stably recover the unknown
sparse signal x . from the noisy measurements y. It has been shown
in [16] that a stable recovery can be achieved in polynomial time by
solving the convex optimization problem

minimize
subject to

Il xlh
II Ax - Yl1 2 ::; E,

(2)

where x E lRn is the optimization variable, and 11 . 11 1 denotes the f\
norm of a vector. We note that problem (2) is a special instance of
a second order co ne program [17], which is typically solved by the
interior-point algorithm [2].

B. Memristor Crossbar

A Memristor has the unique property to be able to record the
historical profile of the excitations on the device. More specifically,
the state (memristance) of a memristor will change when a certain
voltage higher than a threshold voltage is applied at its two terminals.
Otherwise, the memristor behaves like a resistor. This unique property
makes it an ideal candidate for non-volatile memory and matrix
computations [18] , [19]. Physical memristors can be fabricated in
a high density grid, known as a crossbar [11].

:~~:"~~J~:::~
VI I:',:r~ ~~ :M:::ti

. :

Vo

Fig. 1: A memristor crossbar.

A typical N x N memristor crossbar is iIIustrated in Fig. 1, where
a memristor is connected between each pair of horizontal word­
line (WL) and vertical bit-line (BL) [20]. This structure could be
implemented with a small footprint and is capable of re-programming
each memristor to different resistance states by properly applying
biasing voltages at its two terminals [21] , [22]. To demonstrate the
matrix computation functionality, we apply a vector of input voltages
VI on WLs and collect the current through each BL by measuring the
voltage across resistor T8 with conductance of g8' Assume that the
memristor at the connection between WLi and BLj has a conductance
of gi,j . Then the output voltages can be represented by

Vo = CVI , (3)

where C E lRN x N is determined by the conductance of memristors
(g8 and {gi,j }); see [20, Eq. 5]. It is c1ear from (3) that a programmed
memristor crossbar (with certain conductance matrix C) can be used
to perform matrix-vector multiplication with a constant-time com­
plexity 0(1). Note that the entries of C are restricted to nonnegative
values.

1134

As the reverse operation, the memristor crossbar can be used to
solve a system of linear equations. A voltage vector Vo is applied on
each T s of BL, and the resulting current ftow through each BL can be
approximated as 10,j = g8VO ,j . On the other hand, the current 10,j
through BLj can also be calculated as 10 ,j = ~i Vi ,igi, j. Hence, for
each BLj , equation VO,j = (1 / g8) ~i Vi ,igi,j is mapped. Namely,
the system of linear equations (3) is mapped back to the memristor
crossbar, where the solution VI can be determined by measuring
voltages on the WLs. This implies that the memristor crossbar can
be used as a linear sol ver under the conditions that C is a square
matrix with non negative entries.

III. MEMRISTOR eROSSBAR BASED ROBUST es VIA ADMM

The key step to successfully apply memristor crossbars into es is
to extract subproblems that solve systems of linear equations leading
to the solution of the es problem. In this section, we will show
that ADMM provides a suitable optimization framework to effectively
split problem (2) into a sequence of subproblems that require the
solution of systems of linear equations.

We begin by reformulating problem (2) in a way that lends itself
to the application of ADMM,

minimize Ilwlh + Ll (U) + L2(X, S)
subject to x - w = 0 , s - U = 0,

(4)

where x E lRn , w E lRn , U E lRm and S E lRm are optimization
variables, and LI and L2 are indicator functions corresponding to
constraints of problem (2), namely,

and

Ll(U) = {ooo Il u11 2::; E (5)
otherwise,

Ax - s -y = °
otherwise. (6)

As will be evident later, the newly introduced optimization variables
w, U and s together with the indicator functions (5) - (6) in (4) help
to extract the character of f'I norm, Euclidean ball constraint, and
linear equality constraints from the original problem (2).

ADMM is performed based on the augmented Lagrangian [23]
of problem (4), which is given by

L:(x, s, w, u, J,L , v) = Il wlh + LI (u) + L2(X, s) + J,LT (x - w)
+ ~ ll x - w ll ~ + v T(s - u) + ~ ll s - u ll ~ , (7)

where J,L and v are Lagrangian multipliers (also known as dual
variables), and p > ° is a given regularization parameter associated
with quadratic augmented terms.

ADMM iteratively executes the following three steps [23] for
iteration k = 1, 2, ...

(8)
x ,s

w ,u

J,Lk+l = J,Lk + p(Xk+1 _ w k+1) , Vk+1 = v k + p(Sk+l _ Uk+1) ,

until the stopping conditions are satisfied, Il xk _ w k 11 2+ Iisk _ u k 11 2 ::;
~ and Il xk+1 _ x k 11 2 + Ilsk+1 - sk 11 2 ::; ~, where ~ is a given stopping
tolerance parameter.

We emphasize that the crucial property of ADMM is that, as we
demonstrate in the rest of this section, the solution of problem (8) can
be found by using memristor crossbars with low complexity, and the
solution of problem (9) only involves elementary vector operations.

A. Memristor-based solution to problem (8)

After completing squares with respect to x and s in (7), problem
(8) becomes

minimize
x ,s (10)

subject to Ax - s = y ,

where a := w k - (l / p)JLk, and b := u k - (l / p)vk.

The optimality condition of problem (10) can be obtained by
setting the first-order derivative of the Lagrangian function of problem
(10) equal to zero. This yields

px + ATA = pa, ps - A = pb , Ax - S = y, (11)

where A E]Rm is the Lagrangian multiplier. From (11), the solution
of problem (10) is then given by

[P1n &: ~~] [~] ~] ,= Cz ~ cl, (12)

where In denotes an identity matrix of size n, Z := [xT , ST, ATf
is the vector of primal and dual variables of problem (10), and d :=
[paT , pbT , yTf . In (12), C corresponds to the coefficient matrix
of the left equation, which is invertible (due to the theory of Schur
complement) and is independent of the ADMM iteration.

Note that the analytical solution of (12) is given by Z = C - ld,
which requires 0(n3) arithmetic operations due to the presence of
matrix inversion. To furt her reduce the computational complexity, a
memristor crossbar could be utilized to solve (12) by configuring
memristance values according to the matrix C and applying d at
the output of the memristor crossbar in Fig. 1. Since there may exist
negative entries in C, in what follows we propose a novel matrix
representation that eliminates those negative entries and maintains
valid memristance values.

By introducing auxiliary variables Z, we rewrite (12) as the
following system of linear equations

(l3)

where Z E]Rn , Ti is the number of columns of C that contain negative
elements, (x)+ = max{O,x} is a positive operator defined in an
elementwise fashion for a matrix argument, B E]Rn x n is a submatrix
of (- C)+ after the columns of all zeros are removed, D E]Rnx n

is a submatrix of In after the rows, indexed by the columns of C
that only contain nonnegative elements, are removed, and On is a
zero vector of size Ti . We note that if Ti = 0, the linear system (l3)
reduces to (12).

For ease of notation, we define Q := [(~+ ~]. We illustrate

the construction of Q through the following example with n = 3,

[
2 - 0.1 0.1] [2 0 0.1]

C = - 0.1 2 0.1 =? (C)+ = 0 2 0 .1
0.1 0.1 2 0.1 0.1 2

(-C)' ~ [O:1 °f~] B ~ [O:1 °f],D ~ [~ ~ ~l ,

'. ~ [~ ~l, Q ~ [{ O~1 ~~: O~1 II (14)

1135

Based on (13), we can configure the memristance values (accord­
ing to Q) and utili ze the memristor crossbar to obtain the solution of
problem (8). As demonstrated in Sec.II-B, a programmed memristor
crossbar only requires a constant-time complexity 0(1) to solve a
system of linear equations.

B. Solution to problem (9)

After completing squares with respect to wand u in (7), problem
(9) becomes

minimize
w ,u

Il w ll l + :leu) + ~ ll w - p ll ~ + ~ ll u - q ll ~ , (15)

where p := X k+ l + (1 / p)JLk and q := AXk+ l - y + (1 / p)vk .

Problem (15) can be further decomposed into two subproblems

minimize Il w ll l + ~ ll w - p ll ~ , (16)

and

minimize Il u - q11 3, subject to II u l1 2 S; E. (17)

The solution to problem (16) is given by the soft thresholding
operator [24]

w = (p - l / pl)+ - (- p - l /pl)+ , (18)

where 1 E]Rn is a vector of all ones.

The solution of problem (17) is given by projecting q onto an
Euclidean ball,

(19)

We remark that the difficulty of hardware-based calculation of
(18) - (19) lies in calculating the e2-norm of a vector, which can be
realized using peripheral circuits including analog multipliers and
summing amplifiers in the analog domain [25], [26]. Or we can
convert the vector to the digital domain and then calculate its norm.

Following (8) and (9), the solution of robust CS is readily obtained
by using memristor crossbars and elementary hardware-based vector
computations. In the next section, we will elaborate on the algorithm
complexity and the impact of hardware variations on the memristor­
based CS solution.

IV. COMPUTATIONAL COMPLEXITY AND DEVICE VARIATIONS

ADMM has a linear convergence rate O(l / k) for general convex
optimization problems [27] , where k is the number of iterations. In
other words, given the stopping tolerance~ , ADMM requires 0(1/ 0
iterations to converge. However, it is often the case that ADMM
converges faster to provide modest accuracy that is sufficient for many
applications [23], [24] , [28]- [30]. At each iteration of ADMM, the
computational complexity is approximated by O(n) , where we obtain
a) 0(1) complexity by utili zing memristor crossbars to solve a system
of linear equations (l3), and b) O(n) complexity for vector operations
in (18) and (19). In the big data context with large n, the memristor
crossbar based CS solver yields the complexity O(n). Compared
to the software approach, e.g. , SOCP with complexity 0(n3 .5) , the
proposed sol ver achieves 0(n2 .5) speed-up.

The hardware design of the proposed memristor crossbar-based
robust CS sol ver also exhibits relatively low complexity, and mainly
consists of two parts. The first part is the memristor crossbar-based
linear system sol ver to solve problem (8), in which only a single
memristor crossbar is needed. The second part is the digital (or

analog) circuit-based sol ver of problem (9), which uses a multiplier,
an accumulator, and a divider when solving iteratively in the digital
domain. In addition, the updating of dual variables {tk+ 1 and 1'k+ 1

involves standard additionlsubtraction calculations in digital or analog
domains. We stress that the solution framework exhibits low hardware
complexity because only one memristor crossbar is required.

It is known from [l3] that the memory devices relying on the
ionldefects motion typically show noticeable device variations from
cell-to-cell and from cycle-to-cycle. Therefore, to turn the memristor
cross bar based es framework into real-life applications, we face the
following obstacle. The presence of hardware variations leads to a
reduced reading accuracy of Q configured in memristor cross bar
arrays, where Q is introduced in (14). As a result, the matrix used in
ADMM is actually modified to Q = Q + T~, where T~ represents
the hardware variation, T governs the variation strength, and ~ is
T-dependent. Based on Taylor series expansion, we obtain that

(20)

which holds when T is a small number. It is c1ear from (20) that
the matrix inversion Q - 1 is valid when the hardware variation does
not dominate the matrix Q. It is often the case that T is small since
(II Q - QIIF/IIQIIF) is typically less than 5% ~ 10%, where II · IIF
denotes the Frobenius norm of a matrix. Our numerical results in the
next section will show that although there exists a slight decrease of
recovery accuracy, the obtained sparse support (i.e., sparsity pattern)
of the signal of interest is almost the same for different levels of
hardware variations.

Y. NUMERICAL RESULTS

In this section, we consider a sparse signal x . of length n = 1024
with s nonzero entries. These s nonzero spike positions are chosen
randomly, and their values are chosen independently from the standard
normal distribution. To specify the observation model (2), we consider
m = 300 and generate a random m x n matrix A with i.i.d. entries
from the standard normal distribution. The vector of measurement
noises v is drawn from the Gaussian distribution N(O , 0-21) , where
0- = 0.01. The accuracy tolerance E is set to E2 = 0-2(m + 2v'2ffi),
which provides a Iikely upper bound on II vl1 2 [31]. We adopt Il x -
x.112 (averaged over 50 numerical trials) to measure the accuracy
of the recovered sparse signal. The ADMM parameters are set to
~ = 10- 3 and p = 10.

In Fig.2, we present the error in sparse signal recovery as a
function of signal sparsity s for different levels of hardware variations.
We recall from (20) that (II Q - QII F/ II QII F) provides the level of
hardware variations. For comparison, we also employ the commonly­
used orthogonal matching pursuit (OMP) algorithm [32] (MATLAB
toolbox designed by [33]) to recover the sparse signal x • . In both
ADMM and OMP, we set the maximum number of iterations as
1000. We observe that the recovery accuracy improves as s decreases
(namely, the number of nonzero entries in the sparse signal decreases).
This is not surprising, since the sparsity prior plays a key role in
stable signal recovery at a rate much smaller than wh at is commonly
prescribed by Shannon-Nyquist [2]. We also note that the recovery
accuracy of using the memristor-based es sol ver is comparable to
that of using OMP even in the presence of hardware variations. By
fixing s, we see that the recovery accuracy decreases while increasing
the level of hardware variations. To c1early show the performance
loss, in Fig.3 we compare the recovered signal under 0% or 5%
hardware variation with the original sparse signal to be recovered
when s = 105. elearly, the recovered signal yields almost the same
sparse support as that of the original signal even if there exists 5%

1136

0.9

0.8

c:- 0.7

~ 8 0.6
~
1ii 0.5
c:

~04
'0 e 0 3
w

0.2

0.1

o

20

~ Orthogonal matching pursuit (OMP)
--e-- Our appraoch: No hardware varialion
--A- Our approach: 1 % hardware variatior
-e-- Our approach: 3% hardware variatior
-+ Our approach: 5% hardware variatior

40 6 0 80 100 120

Sparsity level , 5

140 160

Fig. 2: Recovery accuracy versus signal sparsity s for different levels of
hardware variations.

hardware variation. The promising results show that the memristor­
based es sol ver is quite robust to hardware variations, and is able to
provide reliable signal recovery performance compared to the original
sparse signal and the software solution.

~ :1 1. Ild'lli :"11 1"1 ,1 1,111 Ir I:: '11' c '111' 11 ' P '111 "'1'11 1 'I
o 100 200 300 400 500 600 700 800 900 1000 1100

~ :1 k. '1:1111111 :1 d j 1 f.lI:J ,11 ,111,.1 11,11 I j Ir" 1 11' f r r I 1/ ' 1 11 ~' I \ 11 r I Irr ~
~ -2 I - No variation I
'" -4 L--"O~-1c'-OO~~2-'cOO~~30'c-O-c-"40~O -5"'OO~~6-'cOO~~70'c-O-c-'80~O -9"'OO~~1 O""OO~-cc'1100

~ 2

1
., Ild,,1 d , 11 : 1 " ' II I,llhl~lrn 1<1" H' I 'I ' 1" fI \J~ I
o 100 200 300 400 500 600 700 800 900 1000 1100

Dimension of x

Fig. 3: Recovered signals versus original sparse signal for different levels of
hardware variations.

VI. eONCLUSION

In this paper, we have developed a novel es framework using
memristor crossbars, To be more specific, we first employed ADMM
to extract systems of linear equations from the solution of robust
es problems. A mernristor crossbar array is then utilized to solve
the resulting linear equations with astonishing 0(1) time complexity.
Moreover, we elaborated on the impact of device variations on the
memristor-based es sol ver. We demonstrated that the proposed es
sol ver is robust to hardware variations and achieves 0(n25) speed­
up compared to the conventional software approach. In future work,
we would like to develop a unified mernristor-based es sol ver that
addresses the problem of robust es as well as I-bit es. We also
would like to develop a real hardware system on chip for es using
mernristor devices.

REFERENCES

[1] S. Qaisar, R. M. Bilal , W. Iqbal, M. Naureen, and S. Lee, "Compressive
sensing: From theory to applications, a survey," Journal of Communi­
cations and Networks, vol. 15, no. 5, pp. 443-456, Oct. 2013.

[2] E. Candes, J. Romberg, and T. Tao, "Stable signal recovery from
incomplete and inaccurate measurements," Comm. Pure and Applied
Math., vol. 59, no. 8, pp. 1207- 1223, 2006.

[3] D. L. Donoho, "Compressed sensing," IEEE Transactions on Informa­
tion Theory, vol. 52, no. 4, pp. 1289-1306, April 2006.

[4] E. J. Candes, J. Romberg, and T. Tao, "Robust uncertainty principles:
exact signal reconstruction from highly incomplete frequency informa­
tion," IEEE Transactions on Information Theory, vol. 52, no. 2, pp.
489-509, Feb. 2006.

[5] W. Dai and O. Milenkovic, "Subspace pursuit for compressive sensing
signal reconstruction," IEEE Transactions on Information Theory, vol.
55, no. 5, pp. 2230-2249, May 2009.

[6] W. Xu and B. Hassibi, "Efficient compressive sensing with deterministic
guarantees using expander graphs," in Information Theory Workshop,
2007. ITW '07. IEEE, Sept. 2007, pp. 414-419.

[7] E. J. Candes and M. B. Wakin, "An introduction to compressive
sampling," IEEE Signal Processing Magazine , vol. 25, no. 2, pp. 21-30,
March 2008.

[8] A. Nemirovski , "Interior point polynomial time methods in convex
programming," 2012 [Online] , Available: http://www2.isye.gatech.edul
~nemirovsILect-'PM.pdf·

[9] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, "The
missing mernristor found," Nature, vol. 453, no. 7191, pp. 80- 83, 05
2008.

[10] D. Chabi, W. Zhao, D. Querlioz, and J. O. Klein, "Robust neural logic
block (nlb) based on mernristor crossbar array," in 2011 IEEEIACM
International Symposium on Nanoscale Architectures, June 2011, pp.
137- 143.

[11] S. H. Jo, K.-H. Kim, and W. Lu, "High-density crossbar arrays based
on a si memristive system," Nano Leiters, vol. 9, no. 2, pp. 870-874,
2009.

[12] I. Richter, K. Pas, X. Guo, R. Patel, J. Liu, E. Ipek, and E. G. Friedman,
"Mernristive accelerator for extreme scale linear sol vers," 2015.

[13] P. Y. Chen, D. Kadetotad, Z. Xu, A. Mohanty, B. Lin, J. Ye, S. Vrudhula,
J. S. Seo, Y. Cao, and S. Yu, "Technology-design co-optimization of
resistive cross-point array for accelerati ng learning algorithms on chip,"
in Proc. 2015 Design, Automation Test in Europe Conference Exhibition
(DATE), March 2015, pp. 854-859.

[14] B. Li, Y. Wang, Y. Wang, Y. Chen, and H. Yang, "Training itself:
Mixed-signal training acceleration for mernri stor-based neural network,"
in 2014 19th Asia and South Pacific Design Automation Conference
(ASP-DAC) , Jan 2014, pp. 361- 366.

[15] L. Chen, C. Li , T. Huang, Y. Chen, and X. Wang, "Mernristor
crossbar-based unsupervised image learning," Neural Computing and
Applications, vol. 25, no. 2, pp. 393-400, 2014.

[16] E. Candes, "Compressive sampling," in Proc. International Congress
of Mathematicians , 2006.

[17] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge
University Press, Cambridge, 2004.

[18] S. H. Jo, T. Chang, 1. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu,
"Nanoscale mernristor device as synapse in neuromorphic systems,"
Nano Leiters, vol. 10, no. 4, pp. 1297- 1301, 2010.

[19] M. Di Ventra, Y. V. Pershin, and L. O. Chua, "Circuit elements with
memory: Mernristors, memcapacitors, and meminductors," Proceedings
of the IEEE, vol. 97, no. 10, pp. 1717- 1724, Oct. 2009.

[20] M. Hu, H. Li, Q. Wu, G. S. Rose, and Y. Chen, "Mernristor crossbar
based hardware realization of bsb recall function," in Proc. The 2012
International Joint Conference on Neural Networks (lJCNN), June
2012, pp. 1- 7.

[21] A. Heittmann and T. G. Noll , "Limits of writing multivalued resistances
in passive nanoelectronic crossbars used in neuromorphic circuits," in
Proceedings of the Great Lakes Symposium on VLSI, 2012, pp. 227-
232.

[22] D. Kadetotad, Z. Xu, A. Mohanty, P.- Y. Chen, B. Lin, J. Ye, S. Vrud­
hula, S. Yu, Y. Cao, and J. Seo, "Neurophysics-inspired parallel
architecture with resistive crosspoint array for dictionary leaming," in

1137

Proc. IEEE Biomedical Circuits and Systems Conference (BioCAS) , Oct
2014, pp. 536-539.

[23] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, "Distributed
optimization and statisticalleaming via the alternating direction method
of multipliers," Foundations and Trends in Machine Learning, vol. 3,
no. 1, pp. 1- 122, 2011.

[24] N. Parikh and S. Boyd, "Proximal algorithms," Foundations and Trends
in Optimization, vol. 1, no. 3, pp. 123-231,2013.

[25] M. Hu, H. Li, Y. Chen, Q. Wu, and G. S. Rose, "Bsb training scheme
implementation on mernristor-based circuit," in Proc. IEEE Symposium
on Computational Intelligence for Security and Defense Applications
(CISDA), April 2013, pp. 80-87.

[26] W. Wen, C. R. Wu, X. Hu, B. Liu, T. Y. Ho, X. Li , and Y. Chen, "An eda
framework for large scale hybrid neuromorphic computing systems," in
Proc. 52nd ACMIEDACIIEEE Design Automation Conference (DAC),
June 2015, pp. 1- 6.

[27] B. He and X. Yuan, "On the O(l/n) convergence rate of the douglas­
rachford alternating direction method," SIAM Journal on Numerical
Analysis, vol. 50, no. 2, pp. 700-709, 2012.

[28] S. Liu, S. Kar, M. Fardad, and P. K. Varshney, "Sparsity-aware sensor
collaboration for linear coherent estimation," IEEE Transactions on
Signal Processing, vol. 63, no. 10, pp. 2582- 2596, May 2015.

[29] S. Liu, M. Fardad, E. Masazade, and P. K. Varshney, "Optimal periodic
sensor scheduling in networks of dynamical systems," IEEE Trans.
Signal Process., vol. 62, no. 12, pp. 3055- 3068, June 2014.

[30] F. Lin, M. Fardad, and M. R. Jovanovic, "Augmented lagrangian
approach to design of structured optimal state feedback gains," IEEE
Transactions on Automatie Control, vol. 56, no. 12, pp. 2923- 2929,
Dec. 2011.

[31] E. Candes, M. Wakin, and S. Boyd, "Enhancing sparsity by reweighted
Cl minimization," Journal of Fourier Analysis and Applications, vol.
14, pp. 877- 905, 2008.

[32] J. A. Tropp and A. C. Gilbert, "Signal recovery from random measure­
ments via orthogonal matching pursuit," IEEE Trans. lnf. Theor. , vol.
53, no. 12, pp. 4655-4666, 2007.

[33] S. Becker, "Cosamp and omp for sparse recovery,"
hltps:llwww.mathworks.comlmatlabcentralljileexchange/32402-cosamp­
and-omp-for-sparse-recovery/contentIOMPm, Aug. 2011.

