
An ADMM-Based Universal Framework for Adversarial Attacks
on Deep Neural Networks

Pu Zhao
1
, Sijia Liu

2
, Yanzhi Wang

1
, Xue Lin

1

1
Department of ECE, Northeastern University

2
MIT-IBM Watson AI Lab, IBM Research AI

ABSTRACT
Deep neural networks (DNNs) are known vulnerable to adversarial

attacks. That is, adversarial examples, obtained by adding delicately

crafted distortions onto original legal inputs, can mislead a DNN to

classify them as any target labels. In a successful adversarial attack,

the targeted mis-classification should be achieved with the minimal

distortion added. In the literature, the added distortions are usually

measured by L0, L1, L2, and L∞ norms, namely, L0, L1, L2, and L∞
attacks, respectively. However, there lacks a versatile framework

for all types of adversarial attacks.

This work for the first time unifies the methods of generating

adversarial examples by leveraging ADMM (Alternating Direction

Method of Multipliers), an operator splitting optimization approach,

such that L0, L1, L2, and L∞ attacks can be effectively implemented

by this general framework with little modifications. Comparing

with the state-of-the-art attacks in each category, our ADMM-based

attacks are so far the strongest, achieving both the 100% attack

success rate and the minimal distortion.

CCS CONCEPTS
• Theory of computation → Mathematical optimization; •
Computing methodologies → Computer vision problems;
Neural networks; • Security and privacy → Software and ap-
plication security;

KEYWORDS
Deep Neural Networks; Adversarial Attacks; ADMM (Alternating

Direction Method of Multipliers)

1 INTRODUCTION
Deep learning has been demonstrating exceptional performance

on several categories of machine learning problems and has been

applied in many settings [7, 13, 14, 18, 21, 27, 31]. However, people

recently find that deep neural networks (DNNs) could be vulnerable

to adversarial attacks [4, 19, 22], which arouses concerns of applying

deep learning in security-critical tasks. Adversarial attacks are

implemented through generating adversarial examples, which are

crafted by adding delicate distortions onto legal inputs. Fig. 1 shows

adversarial examples for targeted adversarial attacks that can fool

DNNs.

The security properties of deep learning have been investigated

from two aspects: (i) enhancing the robustness of DNNs under ad-

versarial attacks and (ii) crafting adversarial examples to test the

vulnerability of DNNs. For the former aspect, research works have

been conducted by either filtering out added distortions [2, 9, 12, 34]

or revising DNN models [8, 10, 25] to defend against adversarial

attacks. For the later aspect, adversarial examples have been gener-

ated heuristically [11, 28], iteratively [15, 19, 24, 33], or by solving

optimization problems [1, 5, 6, 30]. These two aspects mutually ben-

efit each other towards hardening DNNs under adversarial attacks.

And our work deals with the problem from the later aspect.

For targeted adversarial attacks, the crafted adversarial examples

should be able to mislead the DNN to classify them as any target

labels, as done in Fig. 1. Also, in a successful adversarial attack,

the targeted mis-classification should be achieved with the mini-

mal distortion added to the original legal input. Here comes the

question of how to measure the added distortions. Currently, in

the literature, L0, L1, L2, and L∞ norms are used to measure the

added distortions, and they are respectively named L0, L1, L2, and
L∞ adversarial attacks. Even though no measure can be perfect

for human perceptual similarity, these measures or attack types

may be employed for different application specifications. This work

bridges the literature gap by unifying all the types of attacks with

a single intact framework.

In order to benchmark DNN defense techniques and to push for

a limit of the DNN security level, we should develop the strongest

adversarial attacks. For this purpose, we adopt the white-box attack

assumption in that the attackers have complete information about

the DNN architectures and all the parameters. This is also a realistic

assumption, because even if we only have black-box access to the

DNNmodel, we can train a substitute model and transfer the attacks

generated using the substitute model. And for the same purpose,

we adopt the optimization-based approach to generate adversarial

examples. The objectives of the optimization problem should be (i)

misleading the DNN to classify the adversarial example as a target

label and (ii) minimizing the Lp norm of the added distortion.

By leveraging ADMM (Alternating Direction Method of Mul-

tipliers) [3], an operator splitting optimization approach, we pro-

vide a universal framework for L0, L1, L2, and L∞ adversarial at-

tacks. ADMM decomposes an original optimization problem into

two correlated subproblems, each of which can be solved more

efficiently or analytically, and then coordinates solutions to the

subproblems to construct a solution to the original problem. This

decomposition-alternating procedure of ADMM blends the bene-

fits of dual decomposition and augmented Lagrangian for solving

problems with non-convex and combinatorial constraints. There-

fore, ADMM introduces no additional sub-optimality besides the

original gradient-based backpropagation method commonly used

in DNNs and provides a faster linear convergence rate than state-

of-the-art iterative attacks [15, 19, 24, 33]. We also compare with

the optimization-based approaches, i.e., Carlini & Wagner (C&W)

attack [5] and Elastic-net (EAD) attack [6], which are the currently

strongest attacks in the literature.
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original adversarial examples

(a) MNIST

original adversarial examples

(b) CIFAR-10

Figure 1: Adversarial examples generated by our ADMM L0,
L1, L2, and L∞ attacks for MNIST (left) and CIFAR-10 (right)
datasets. The leftmost column contains the original legal in-
puts. The next four columns are the corresponding adver-
sarial examples crafted using our ADMM L0, L1, L2, and L∞
attacks, respectively. If the original inputs are correctly clas-
sified as label l , then the adversarial examples mislead the
DNN to classify them as target label l + 2.

The major contributions of this work and its differences from

C&W and EAD attacks are summarized as follows:

• With our ADMM-based universal framework, all the L0, L1,
L2, and L∞ adversarial attacks can be implemented with

little modifications, while C&W only performs L0, L2, and
L∞ attacks and EAD only performs L1 and L2 attacks.

• C&W L0 attack needs to run their L2 attack iteratively to

find the pixels with the least effect and fix them, thereby

identifying a minimal subset of pixels for modification to

generate an adversarial example.

• C&W L∞ attack through naively optimization with gradient

descent may produce very poor initial results. They solve the

issue by introducing a limit on the L∞ norm and reducing

the limit iteratively.

• EAD attack minimizes a weighted sum of L1 and L2 norms.

However, a universal attack generation model is missing.

• Our extensive experiments show that we are so far the best

attacks. Besides the 100% attack success rate, our ADMM-

based attacks outperform C&W and EAD in each type of

attacks in terms of minimal distortion.

Besides comparing with C&W, EAD and other attacks, we also

test our attacks against defenses such as defensive distillation [25]

and adversarial training [32], demonstrating the success of our

attacks. In addition, we validate the transferability of our attacks

onto different DNN models. The codes of our attacks to reproduce

the results are available online
1
.

2 RELATEDWORK
We introduce the most representative attacks and defenses in this

section.

2.1 Adversarial Attacks
L-BFGS Attack [30] is the first optimization-based attack and is

an L2 attack that uses L2 norm to measure the distortion in the

optimization objective function.

JSMA Attack [24] is an L0 attack and uses a greedy algorithm

that picks the most influential pixels by calculating Jacobian-based

Saliency Map and modifies the pixels iteratively. The computational

complexity is prohibitive even for applying to ImageNet dataset.

FGSM [11] and IFGSM [19] Attacks are L∞ attacks and utilize

the gradient of the loss function to determine the direction tomodify

the pixels. They are designed to be fast, rather than optimal. They

can be used for adversarial training by directly changing the loss

function instead of explicitly injecting adversarial examples into the

training data. The fast gradient method (FGM) and the iterative fast

gradient method (IFGM) are improvements of FGSM and IFGSM,

respectively, that can be fitted as L1, L2, and L∞ attacks.

C&WAttacks [5] are a series of L0, L2, and L∞ attacks that achieve

100% attack success rate with much lower distortions comparing

with the above-mentioned attacks. In particular, the C&W L2 attack
is superior to L-BFGS attack (which is also an L2 attack) because it
uses a better objective function.

EAD Attack [6] formulates the process of crafting adversarial

examples as an elastic-net regularized optimization problem. Elastic-

net regularization is a linear mixture of L1 and L2 norms used in the

penalty function. EAD attack is able to craft L1-oriented adversarial
examples and includes the C&W L2 attack as a special case.

2.2 Representative Defenses
Defensive Distillation [25] introduces temperature into the soft-

max layer and uses a higher temperature for training and a lower

temperature for testing. The training phase first trains a teacher

model that can produce soft labels for the training dataset and then

trains a distilled model using the training dataset with soft labels.

The distilled model with reduced temperature will be preserved for

testing.

Adversarial Training [32] injects adversarial examples with cor-

rect labels into the training dataset and then retrains the neural

network, thus increasing robustness of DNNs under adversarial

attacks.

3 AN ADMM-BASED UNIVERSAL
FRAMWORK FOR ADVERSARIAL
ATTACKS

ADMM was first introduced in the mid-1970s with roots in the

1950s, and the algorithm and theory have been established by the

mid-1990s. It was proposed and made popular recently by S. Boyd

et al. for statistics and machine learning problems with a very large

number of features or training examples [3]. ADMM method takes

1
Codes will be available upon publication of this work.
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the form of a decomposition-alternating procedure, in which the so-

lutions to small local subproblems are coordinated to find a solution

to a large global problem. It can be viewed as an attempt to blend the

benefits of dual decomposition and augmented Lagrangian methods

for constrained optimization.

ADMM was developed in part to bring robustness to the dual

ascent method, and in particular, to yield convergence without as-

sumptions like strict convexity or finiteness of the objective. ADMM

is also capable of dealing with combinatorial constraints due to its

decomposition property. It can be used in many practical applica-

tions, where the convexity of the objective can not be guaranteed

or it has some combinatorial constraints. Besides, it converges fast

in many cases since the two arguments are updated in an alternat-

ing or sequential fashion, which accounts for the term alternating
direction.

3.1 Notations and Definitions
In this paper, we mainly evaluate the adversarial attacks with image

classification tasks. A two dimensional vector x ∈ R
hw

represents

a gray-scale image with height h and widthw . For a colored RGB

image with three channels, a three dimensional tensor x ∈ R
3hw

is

utilized to denote it. Each element xi represents the value of the i-th
pixel and is scaled to the range of [0, 1]. A neural network has the

model F (x) = y, where F generates an output y given an input x .
Model F is fixed since we perform attacks on given neural network

models.

The output layer performs softmax operation and the neural

network is an m-class classifier. Let the logits Z (x) denote the

input to the softmax layer, which represents the output of all layers

except for the softmax layer. We have F (x) = softmax(Z (x)) = y.
The element yi of the output vector y represents the probability

that input x belongs to the i-th class. The output vector y is treated

as a probability distribution, and its elements satisfy 0 ≤ yi ≤ 1

and y1 + y2 + · · · + ym = 1. The neural network classifies input x
according to the maximum probability, i.e., C(x) = argmax

i
yi .

The adversarial attack can be either targeted or untargeted. Given

an original legal input x0 with its correct label t∗, the untargeted
adversarial attack is to find an input x satisfying C(x) , t∗ while
x and x0 are close according to some measure of the distortion.

The untargeted adversarial attack does not specify any target label

to mislead the classifier. In the targeted adversarial attack, with a

given target label t , t∗, an adversarial example is an input x such

that C(x) = t while x and x0 are close according to some measure

of the distortion. In this work, we consider targeted adversarial

attacks since they are believed stronger than untargeted attacks.

3.2 General ADMM Framework for Adversarial
Attacks

The initial problem of constructing adversarial examples is defined

as: Given an original legal input image x0 and a target label t ,
find an adversarial example x , such that D(x − x0) is minimized,

C(x) = t , and x ∈ [0, 1]n . x − x0 is the distortion added onto the

input x0. C(·) is the classification function of the neural network

and the adversarial example x ∈ [0, 1]n is classified as the target

label t .
D(x − x0) is a measure of the distortion x − x0. We need to

measure the distortion between the original legal input x0 and

the adversarial example x . Lp norms are the most commonly used

measures in the literature. The Lp norm of the distortion between

x and x0 is defined as:

∥x − x0∥p =
( n∑
i=1

|xi − x0i |p
) 1

p

(1)

We see the use of L0, L1, L2, and L∞ norms in different attacks.

- L0 norm: measures the number of mismatched elements be-

tween x and x0.
- L1 norm: measures the sum of the absolute values of the

differences between x and x0.
- L2 norm: measures the standard Euclidean distance between

x and x0.
- L∞ norm: measures the maximum difference between xi and
x0i for all i’s.

In this work, with a general ADMM-based framework, we im-

plement L0, L1, L2, and L∞ attacks, respectively. When generating

adversarial examples in the four attacks, D(x −x0) in the objective

function becomes L0, L1, L2, and L∞ norms, respectively. For the

simplicity of expression, in the general ADMM-based framework,

the form ofD(x−x0) is used to denote the measure of x−x0. When

introducing the detailed four attacks based on the ADMM frame-

work, we utilize the form of Lp norm to represent the distortion

measure.

ADMM provides a systematic way to deal with non-convex and

combinatorial constraints by breaking the initial problem into two

subproblems. To do this, the initial problem is first transformed

into the following problem, introducing an auxiliary variable z:

min

x ,z
D(x − x0) + д(z)

s .t . x = z
z ∈ [0, 1]n

(2)

where д(x) has the form:

д(x) =
{

0 if max

i,t
(Z (x)i ) − Z (x)t ≤ 0

+∞ otherwise

(3)

Here Z (x) is the logits before the softmax layer. Z (x)i means the

i-th element of Z (x). The function д(x) ensures that the input is
classified with target label t . The augmented Lagrangian function

of problem (2) is as follows:

Lρ (x ,z,u) = D(x − x0) + д(z) +uT (x − z) + ρ

2

∥x − z∥2
2

(4)

where u is the dual variable or Lagrange multiplier and ρ > 0 is

called the penalty parameter. Using the scaled form of ADMM by

defining u = ρs , we have:

Lρ (x ,z, s) = D(x − x0) + д(z) +
ρ

2

∥x − z + s ∥2
2
− ρ

2

∥s∥2
2

(5)

ADMM solves problem (2) through iterations. In the k-th itera-

tion, the following steps are performed:

xk+1 = argmin

x
Lρ (x ,zk , sk ) (6)

zk+1 = argmin

z
Lρ (xk+1,z, sk ) (7)

sk+1 = sk + xk+1 − zk+1 (8)

In Eqn. (6), we find xk+1 which minimizes Lρ with fixed zk and

sk . Similarly, in Eqn. (7), xk+1 and sk are fixed and we find zk+1

3



minimizing Lρ . sk+1 is then updated accordingly. Note that the two

variables x and z are updated in an alternating or sequential fashion,
from which the term alternating direction comes. It converges when:xk+1 − zk+1

2
2

≤ ε,
zk+1 − zk

2
2

≤ ε (9)

Equivalently, in each iteration, we solve two optimization sub-

problems corresponding to Eqns. (6) and (7), respectively:

min

x
D(x − x0) +

ρ

2

∥x − z + s ∥2
2

(10)

and

min

z
д(z) + ρ

2

∥x − z + s ∥2
2

(11)

The non-differentiable д(x) makes it difficult to solve the second

subproblem (11). Therefore, a new differentiable д(x) inspired by

[5] is utilized as follows:

д(x) = c ·max

((
max

i,t
(Z (x)i ) − Z (x)t

)
,−κ

)
(12)

Then, stochastic gradient decent methods can be used to solve this

subproblem. The Adam optimizer [16] is applied due to its fast

and robust convergence behavior. In the new д(x) of Eqn. (12),
κ is a confidence parameter denoting the strength of adversarial

example transferability. The larger κ, the stronger transferability
of the adversarial example. It can be kept as 0 if we do not evaluate

the transferability.

3.3 Box Constraint
The constraint on z i.e., z ∈ [0, 1]n is known as a “box constraint”

in the optimization literature. We use a new variablew and instead

of optimizing over z defined above, we optimize overw , based on:

z =
1

2

(
tanh(w) + 1

)
(13)

Here the tanh(·) is performed elementwise. Since −1 ≤ tanh(wi ) ≤
1, the method will automatically satisfy the box constraint and al-

lows us to use optimization algorithms that do not natively support

box constraints.

3.4 Selection of Target Label
For targeted attacks, there are different ways to choose the target

labels:

- Average Case: select at random the target label uniformly

among all the labels that are not the correct label.

- Best Case: perform attacks using all incorrect labels, and

report the target label that is the least difficult to attack.

- Worst Case: perform attacks using all incorrect labels, and

report the target label that is the most difficult to attack.

We evaluate the performs of the proposed ADMM attacks in the

three cases mentioned above.

3.5 Discussion on Constants
There are two constants c and ρ in the two subproblems (10) and (11).

Different policies are adopted for choosing appropriate c and ρ in

L0, L1, L2 and L∞ attacks. In L2 attack, since ρ acts in both problems

(10) and (11), we fix ρ and change c to improve the solutions. We

find that the best choice of c > 0 is the smallest one that can help

achieve д(x) = 0 in the subproblem (11). Thus, a modified binary

search is used to find a satisfying c . For the ADMM L0 attack, as ρ

has stronger and more direct influence on the solutions, c is fixed
and adaptive search of ρ is utilized. More details are provided in

Section 4.2. For the ADMM L1 and L∞ attacks, as we find fixed c
and ρ can achieve good performance, c and ρ are kept unchanged

and adaptive search method is not used.

4 INSTANTIATIONS OF L0, L1, L2 AND L∞
ATTACKS BASED ON ADMM FRAMEWORK

The ADMM framework for adversarial attacks now need to solve

two subproblems (10) and (11). The difference between L0, L1, L2
and L∞ attacks lies in the subproblem (10), while the processes

to find the solutions of the subproblem (11) based on stochastic

gradient descent method are the very similar for the four attacks.

4.1 L2 Attack
For L2 attack, the subproblem (10) has the form:

min

x
∥x − x0∥22 +

ρ

2

∥x − z + s ∥2
2

(14)

the solution to which can be directly derived in an analytical format:

x =
ρ

2 + ρ
(z − s) + 2

2 + ρ
x0 (15)

Then the complete solution to the L2 attack problem using the

ADMM framework is as follows: for the k-th iteration,

xk+1 =
ρ

2 + ρ

((
1

2

(
tanh(wk ) + 1

) )
− sk

)
+

2

2 + ρ
x0 (16)

wk+1 = argmin

w

(
д

(
1

2
(tanh(w) + 1)

)
+
ρ
2

xk+1 − (
1

2
(tanh(w) + 1)

)
+ sk

2
2

)
(17)

sk+1 = sk + xk+1 −
(
1

2

(
tanh(wk+1) + 1

) )
(18)

Eqn. (16) corresponds to the analytical solution to the subproblem

(10) i.e., problem (14) with Eqn. (13) replacing z in Eqn. (15). Eqn. (17)
corresponds to the subproblem (11) with Eqn. (13) replacing z and

д taking the form of Eqn. (12). The solution to Eqn. (17) is derived

through the Adam optimizer with stochastic gradient descent.

4.2 L0 Attack
For L0 attack, the subproblem (10) has the form:

min

x
∥x − x0∥0 +

ρ

2

∥x − z + s ∥2
2

(19)

Its equivalent optimization problem is as follows:

min

δ
∥δ ∥

0
+
ρ

2

∥δ − z + s + x0∥22 (20)

The solution to problem (19) can be obtained through x∗ = x0 +δ∗

where δ∗ is the solution to problem (20). The solution to problem

(20) can be derived in this way: let δ be equal to z − s − x0 first,
then for each element in δ , if its square is smaller than

2

ρ , make it

zero. A proof for the solution is given in the following.

Lemma 4.1. Suppose that two matrices A, B are of the same size,
and that there are at least k zero elements inA. Then the optimal value
of the following problem is the sum of the square of the k smallest
elements in B.

min

A
∥A − B∥2

2
(21)
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The proof for the lemma is straightforward and we omit it for the

sake of brevity. We use h(x ,k) to denote the sum of the k smallest

x2i (xi is an element in x ).

Theorem 4.2. Set δ = z − s − x0 and then make those elements
in δ zeros if their square are smaller than 2

ρ . Such δ would yield the
minimum objective value of problem (20).

Proof. Suppose that δ1 is constructed according to the above

rule in Theorem 1, and δ1 has k1 elements equal to 0. We need to

prove that δ1 is the optimal solution with the minimum objective

value. Suppose we have another arbitrary solution δ2 with k2 ele-
ments equal to 0. Both δ1 and δ2 have n elements. The objective

value of solution δ1 is:

∥δ1∥0 +
ρ

2

h(z − s − x0,k1) = n − k1 +
ρ

2

h(z − s − x0,k1) (22)

The objective value of solution δ2 is:

∥δ2∥0 +
ρ
2
∥δ2 − z + s + x0∥22 ≥ ∥δ2∥0 +

ρ
2
h(z − s − x0,k2)

= n − k2 +
ρ
2
h(z − s − x0,k2)

(23)

The inequality in Eqn. (23) holds due to Lemma 4.1.

If k2 > k1, then according to the definition of δ1, we have

h(z − s − x0,k2) − h(z − s − x0,k1) >
2

ρ
(k2 − k1) (24)

So that(
n−k2+

ρ

2

h(z−s−x0,k2)
)
−

(
n−k1+

ρ

2

h(z−s−x0,k1)
)
> 0 (25)

If k1 > k2, then according to the definition of δ1, we have

h(z − s − x0,k1) − h(z − s − x0,k2) <
2

ρ
(k1 − k2) (26)

So that(
n−k2+

ρ

2

h(z−s−x0,k2)
)
−

(
n−k1+

ρ

2

h(z−s−x0,k1)
)
> 0 (27)

Thus, we can see that our solution δ1 can achieve the minimum

objective value and it is the optimal solution. □

When solving the subproblem (19) according to Theorem 4.2,

we enforce a hidden constraint on the distortion δ = x − x0, that
the square of each non-zero element in δ must be larger than

2

ρ .

Therefore, a smaller ρ would push ADMM method to find δ with

larger non-zero elements, thus reducing the number of non-zero

elements and decreasing L0 norm. Empirically, we find the constant

ρ represents a trade-off between attack success rate and L0 norm
of the distortion, i.e., a larger ρ can help find solutions with higher

attack success rate at the cost of larger L0 norm of the distortion.

Then the complete solution to the L0 attack problem using the

ADMM framework can be derived similar to the L2 attack. More

specifically, in each iteration, Theorem 4.2 is applied to obtain the

optimal δ and x . Then we solve Eqn. (17) with Adam optimizer and

update parameters through (18).

4.3 L1 Attack
For L1 attack, the subproblem (10) has the form:

min

x
∥x − x0∥1 +

ρ

2

∥x − z + s ∥2
2

(28)

Problem (28) has the closed-form solution. If we change the variable

δ = x − x0, then problem becomes

min

δ
∥δ ∥

1
+
ρ

2

∥δ + x0 − z + s ∥2
2
. (29)

The solution of problem (29) is given by the soft thresholding op-

erator evaluated at the point (z − s − x0) with a parameter 1/ρ
[26],

δ∗ = (z − s − x0 − 1/ρ)+ − (−(z − s − x0) − 1/ρ)+ , (30)

where (·)+ is taken in elementwise, and (x)+ = x if x ≥ 0, and 0

otherwise. Therefore, the solution to problem (28) is given by

x∗ = x0 + δ∗. (31)

The complete solution to the L1 attack problem using the ADMM

framework is similar to the L2 attack. In each iteration, we obtain

the closed-form solution of the first subproblem (28) and then Adam

optimizer is utilized to solve the second subproblem (17). Next we

update the parameters through Eqn. (18).

4.4 L∞ Attack
For L∞ attack, the subproblem (10) has the form:

min

x
∥x − x0∥∞ +

ρ

2

∥x − z + s ∥2
2

(32)

This problem does not have a closed form solution. One possible

method is to derive the KKT conditions of problem (32) [26]. Here

we use stochastic gradient decent methods to solve it. In the experi-

ments, we find that the Adam optimizer [16] could achieve fast and

robust convergence results. So Adam optimizer is utilized to solve

Eqn. (32). Since Eqn. (32) is relatively simpler compared with Eqn.

(17), the complexity for solving Eqn. (32) with Adam optimizer is

negligible.

The complete solution to theL∞ attack problem using theADMM

framework can be derived similar to the L2 attack. In the k-th iter-

ation, we first use Adam optimizer to get the optimal xk+1 in Eq.

(32). Then we solve Eq. (17) and update parameters through Eq. (18)

as the L2 attack.

5 PERFORMANCE EVALUATION
The proposed ADMM attacks are compared with state-of-the-art

attacks, including C&W attacks [5], EAD attack, FGM and IFGM

attacks, on three image classification datasets, MNIST [20], CIFAR-

10 [17] and ImageNet [7]. We also test our attacks against two

defenses, defensive distillation [25] and adversarial training [32],

and evaluate the transferability of ADMM attacks.

5.1 Experiment Setup and Parameter Setting
Our experiment setup is based on C&Wattack setup for fair compar-

isons. Two networks are trained for MNIST and CIFAR-10 datasets,

respectively. For the ImageNet dataset, a pre-trained network is

utilized. The network architecture for MNIST and CIFAR-10 has

four convolutional layers, two max pooling layers, two fully con-

nected layers and a softmax layer. It can achieve 99.5% accuracy on

MNIST and 80% accuracy on CIFAR-10. For ImageNet, a pre-trained

Inception v3 network [29] is applied so there is no need to train

our own model. The Google Inception model can achieve 96% top-5

accuracy with image inputs of size 299×299×3. All experiments are
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Table 1: Adversarial attack success rate (ASR) and distortion of different L2 attacks for different datasets

Data Set Attack Method

Best Case Average Case Worst Case

ASR L2 L1 L∞ ASR L2 L1 L∞ ASR L2 L1 L∞

MNIST

FGM(L2) 99.4 2.245 25.84 0.574 34.6 3.284 39.15 0.747 0 N.A. N.A. N.A.

IFGM(L2) 100 1.58 18.51 0.388 99.9 2.50 32.63 0.562 99.6 3.958 55.04 0.783

C&W(L2) 100 1.393 13.57 0.402 100 2.002 22.31 0.54 99.9 2.598 31.43 0.689

ADMM(L2) 100 1.288 13.87 0.345 100 1.873 22.52 0.498 100 2.445 31.427 0.669

CIFAR-10

FGM(L2) 99.5 0.421 14.13 0.05 42.8 1.157 39.5 0.136 0.7 3.115 107.1 0.369

IFGM(L2) 100 0.191 6.549 0.022 100 0.432 15.13 0.047 100 0.716 25.22 0.079

C&W(L2) 100 0.178 6.03 0.019 100 0.347 12.115 0.0364 99.9 0.481 16.75 0.0536

ADMM(L2) 100 0.173 5.8 0.0192 100 0.337 11.65 0.0365 100 0.476 16.73 0.0535

ImageNet

FGM(L2) 12 2.29 752.9 0.087 1 6.823 2338 0.25 0 N.A. N.A. N.A.

IFGM(L2) 100 1.057 349.55 0.034 100 2.461 823.52 0.083 98 4.448 1478.8 0.165

C&W(L2) 100 0.48 142.4 0.016 100 0.681 215.4 0.03 100 0.866 275.4 0.042

ADMM(L2) 100 0.416 117.3 0.015 100 0.568 177.6 0.022 97 0.701 229.08 0.0322

conducted on machines with an Intel I7-7700K CPU, 32 GB RAM

and an NVIDIA GTX 1080 TI GPU.

The implementations of FGM and IFGM are based on the Clev-

erHans package [23]. The key distortion parameter ϵ is determined

through a fine-grained grid search. For each image, the smallest

ϵ in the grid leading to a successful attack is reported. For IFGM,

we perform 10 FGM iterations. The distortion parameter ϵ ′ in each

FGM iteration is set to be ϵ/10, which is quite effective shown in

[32].

The implementations of C&W attacks and EAD attack are based

on the github code released by the authors. The EAD attack has

two decision rules when selecting the final adversarial example: the

least elastic-net (EN) and L1 distortion measurement (L1). Usually,
the L1 decision rule can achieve lower L1 distortion than the EN

decision rule as the EN decision rule considers a mixture of L1 and
L2 distortions. We use the L1 decision rule for fair comparison.

5.2 Attack Success Rate and Distortion for
ADMM L2 attack

The ADMM L2 attack is compared with FGM, IFGM and C&W L2
attacks. The attack success rate (ASR) represents the percentage of

the constructed adversarial examples that are successfully classified

as target labels. The average distortion of all successful adversarial

examples is reported. For zero ASR, its distortion is not available

(N.A.). We craft adversarial examples on MNIST, CIFAR-10 and Im-

ageNet. For MNIST and CIFAR-10, 1000 correctly classified images

are randomly selected from the test sets and 9 target labels are

tested for each image, so we perform 9000 attacks for each dataset

using each attack method. For ImageNet, 100 correctly classified

images are randomly selected and 9 random target labels are used

for each image.

The parameter ρ is fixed to 20. The number of ADMM iterations

is set to 10. In each ADMM iteration, Adam optimizer is utilized to

solve the second subproblem based on stochastic gradient descent.

When using Adam optimizer, we do binary search for 9 steps on the

parameter c (starting from 0.001) and runs 1000 learning iterations

for each c with learning rate 0.02 for MNIST and 0.002 for CIFAR-10

and ImageNet. The attack transferability parameter is set to κ = 0.

Table 2: Adversarial attack success rate and distortion of
ADMM and C&W L0 attacks for MNIST and CIFAR-10

Dataset

Attack

method

Best case Average case Worst case

ASR L0 ASR L0 ASR L0

MNIST

C&W(L0) 100 8.1 100 17.48 100 31.48

ADMM(L0) 100 8 100 15.71 100 25.87

CIFAR

C&W(L0) 100 8.6 100 19.6 100 34.4

ADMM(L0) 100 8.25 100 18.8 100 31.2

Table 1 shows the results on MNIST, CIFAR-10 and ImageNet.

As we can see, FGM fails to generate adversarial examples with

high success rate since it is designed to be fast, rather than optimal.

Among IFGM, C&W and ADMM L2 attacks, ADMM achieves the

lowest L2 distortion for the best case, average case and worst case.

IFGM has larger L2 distortions compared with C&W and ADMM at-

tacks on the three datasets, especially on ImageNet. For MNIST, the

ADMM attack can reduce the L2 distortion by about 7% compared

with C&W L2 attack. This becomes more prominent on ImageNet

that ADMM reduces L2 distortion by 19% comparing with C&W in

the worst case.

We also observe that on CIFAR-10, ADMM L2 attack can achieve

lower L2 distortions but the reductions are not as prominent as that

on MNIST or ImageNet. The reason may be that CIFAR-10 is the

easiest dataset to attack since it requires the lowest L2 distortion
among the three datasets. So both ADMM L2 attack and C&W L2
attack can achieve quite good performance. Note that in most cases

on the three datasets, ADMM L2 attack can achieve lower L1, L2
and L∞ distorions than C&W L2 attack, indicating a comprehensive

enhancement of the ADMM L2 attack over C&W L2 attack.

5.3 Attack Success Rate and Distortion for
ADMM L0 attack

The performance of ADMM L0 attack in terms of attack success

rate and L0 norm of distortion is demonstrated in this section. The

ADMM L0 attack is compared with C&W L0 attack on MNIST and

CIFAR-10. 500 images are randomly selected from the test sets of

MNIST and CIFAR-10, respectively. Each image has 9 target labels
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Table 3: Adversarial attack success rate (ASR) and distortion of different L1 attacks for different datasets

Data Set Attack Method

Best Case Average Case Worst Case

ASR L1 L2 L∞ ASR L1 L2 L∞ ASR L1 L2 L∞

MNIST

FGM(L1) 100 29.6 2.42 0.57 36.5 51.2 3.99 0.8 0 N.A. N.A. N.A.

IFGM(L1) 100 18.7 1.6 0.41 100 33.9 2.6 0.58 100 54.8 4.04 0.81

EAD(L1) 100 7.08 1.49 0.56 100 12.5 2.08 0.77 100 18.8 2.57 0.92

ADMM(L1) 100 6.0 2.07 0.97 100 10.61 2.72 0.99 100 16.6 3.41 1

CIFAR-10

FGM(L1) 98.5 18.25 0.53 0.057 47 48.32 1.373 0.142 1 33.99 0.956 0.101

IFGM(L1) 100 6.28 0.184 0.21 100 13.72 0.394 0.44 100 22.84 0.65 0.74

EAD(L1) 100 2.44 0.31 0.084 100 6.392 0.6 0.185 100 10.21 0.865 0.31

ADMM(L1) 100 2.09 0.319 0.102 100 5.0 0.591 0.182 100 7.453 0.77 0.255

ImageNet

FGM(L1) 12 229 0.73 0.028 1 67 0.165 0.08 0 N.A. N.A. N.A.

IFGM(L1) 93 311 0.966 0.033 67 498.5 1.5 0.051 47 720.2 2.2 0.08

EAD(L1) 100 65.4 0.632 0.047 100 165.5 1.02 0.06 100 290 1.43 0.08

ADMM(L1) 100 56.1 0.904 0.053 100 92.7 1.15 0.0784 100 142.1 1.473 0.102

and we perform 4500 attacks for each dataset using either ADMM

or C&W L0 attack.
For ADMM L0 attack, 9 binary search steps are performed to

search for the parameter ρ while c is fixed to 20 for MNIST and 200

for CIFAR-10. The initial value of ρ is set to 3 for MNIST and 40

for CIFAR-10, respectively. The number of ADMM iterations is 10.

In each ADMM iteration, Adam optimizer is utilized to solve the

second subproblem with 1000 Adam iterations while the learning

rate is set to 0.01 for MNIST and CIFAR-10.

The results of the L0 attacks are shown in Table 2. As observed

from the table, both C&W and ADMM L0 attacks can achieve 100%

attack success rate. For the best case, C&W L0 attack and ADMM L0
attack have relatively close performance in terms of L0 distortion.
For the worst case, ADMM L0 attack can achieve lower L0 distortion
than C&W. ADMM L0 attack reduces the L0 distortion by up to 17%

on MNIST. We also note that the differences between C&W and

ADMM L0 attacks are smaller on CIFAR-10 than that on MNIST.

5.4 Attack Success Rate and Distortion for
ADMM L1 attack

We compare the ADMM L1 attack with FGM, IFGM and EAD L1 [6]
attacks. The attack success rate (ASR) and the average distortion

of all successful adversarial examples are reported. We perform

the adversarial L1 attacks on MNIST, CIFAR-10 and ImageNet. For

MNIST and CIFAR-10, 1000 correctly classified images are randomly

selected from the test sets and 9 target labels are tested for each

image, so we perform 9000 attacks for each dataset using each

attack method. For ImageNet, 100 correctly classified images and 9

target labels are randomly selected.

The number of ADMM iterations is set to 80. In each ADMM

iteration, Adam optimizer is utilized to solve the second subproblem

based on stochastic gradient descent. When using Adam optimizer,

we run 2000 learning iterations with initial learning rate 0.1 for

MNIST and 0.001 for CIFAR-10 and ImageNet. The parameter c is
fixed to 2 for MNIST, 40 for CIFAR-10, and 200 for ImageNet. The

parameter ρ is fixed to 10 for MNIST, 300 for CIFAR-10, and 2000

for ImageNet. Note that we do not perform binary search of c or ρ
as fixed c and ρ can achieve good performance.

The results of the ADMM L1 attack are shown in Table 3. We

can observe that both EAD and ADMM L1 attacks can achieve

100% attack success rate while FGM L1 attack has bad performance

and IFGM L1 attack can not guarantee 100% ASR on ImageNet.

ADMM L1 attack can achieve the best performance compared with

FGM, IFGM, and EAD L1 attacks. As demonstrated in Table 3, the

L1 distortion measurements of ADMM and EAD L1 attacks are

relatively close in the best case while the improvement of ADMM

L1 attack over EAD L1 attack is much larger for the worst case. In

the best case, the ADMM L1 attack can craft adversarial examples

with a L1 norm about 14% smaller than that of the EAD L1 attack on
MNIST, CIFAR-10 and ImageNet. For the worst case, the L1 norm
of ADMM L1 attack is about 28% lower on CIFAR-10 and 50% lower

on ImageNet compared with that of EAD L1 attack.

5.5 Attack Success Rate and Distortion for
ADMM L∞ attack

The ADMM L∞ attack is compared with FGM and IFGM L∞ at-

tacks. The attack success rate (ASR) and the average distortion

of all successful adversarial examples are reported. We perform

the adversarial L∞ attacks on MNIST, CIFAR-10 and ImageNet. For

MNIST and CIFAR-10, 1000 correctly classified images are randomly

selected from the test sets and 9 target labels are tested for each im-

age, so we perform 9000 attacks for each dataset using each attack

method. For ImageNet, 100 correctly classified images and 9 target

labels are randomly selected.

The parameter ρ is fixed to 0.1. The number of ADMM iterations

is 100 and the batch size is 90. In each ADMM iteration, Adam

optimizer is utilized to solve the first and second subproblem based

on stochastic gradient descent. Adam optimizer runs 1000 iterations

to get the solution of the first subproblem while it executes 2000

iterations to solve the second subproblem. Note that in the second

subproblem, c is fixed to 0.1 as we find fixed c can achieve good

performance and there is no need to perform binary search of c .
The initial learning rate is set to 0.001 for MNIST and 0.002 for

CIFAR-10 and ImageNet. The attack transferability parameter is set

to κ = 0 if we do not perform the transferability evaluation.

The results of the ADMM L∞ attack are demonstrated in Table 4.

We can observe that both IFGM and ADMM L∞ attacks can achieve
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Table 4: Adversarial attack success rate (ASR) and distortion of different L∞ attacks for different datasets

Data Set Attack Method

Best Case Average Case Worst Case

ASR L∞ L1 L2 ASR L∞ L1 L2 ASR L∞ L1 L2

MNIST

FGM(L∞) 100 0.194 84.9 4.04 35 0.283 122.7 5.85 0 N.A. N.A. N.A.

IFGM(L∞) 100 0.148 50.9 2.48 100 0.233 71.2 3.44 100 0.378 96.8 4.64

ADMM(L∞) 100 0.135 35.9 2.068 100 0.178 48 2.73 100 0.218 60.2 3.37

CIFAR-10

FGM(L∞) 100 0.015 42.8 0.78 53 0.48 136 2.5 1.5 0.31 712 14

IFGM(L∞) 100 0.0063 14.36 0.28 100 0.015 26.2 0.54 100 0.026 37.7 0.826

ADMM(L∞) 100 0.0061 12.8 0.25 100 0.0114 23.07 0.47 100 0.017 31.9 0.65

ImageNet

FGM(L∞) 20 0.0873 22372 43.55 1.5 0.0005 134 0.26 0 N.A. N.A. N.A.

IFGM(L∞) 100 0.0046 542.4 1.27 100 0.0128 1039.6 2.54 100 0.0253 1790.2 4.4

ADMM(L∞) 100 0.0041 280.2 0.773 100 0.0059 427.7 1.10 100 0.0092 624.1 1.6

100% attack success rate while FGM has bad performance. ADMM

L∞ attack can achieve the best performance compared with FGM

and IFGM L∞ attacks. We also note that the L∞ norms of ADMM

and IFGM L∞ attacks are relatively close in the best case. Usually

the L∞ distortion measure of ADMM attack is smaller than that of

IFGM attack by no larger than 10% for the best case. In the worst

case, the improvement of ADMM L∞ attack over IFGM L∞ attack is

much more obvious. The L∞ distortion measure of ADMM attack is

about 40% smaller than that of IFGM attack on MNIST or CIFAR-10

dataset for the worst case. On ImageNet, the L∞ norm of ADMM

attack is 64% lower than that of IFGM attack.

5.6 ADMM Attack Against Defensive
Distillation and Adversarial Training

ADMM attacks can break the undefended DNNs with high success

rate. It is also able to break DNNswith defensive distillation.We per-

form C&W L2 attack, ADMM L0, L1, L2 and L∞ attack for different

temperature parameters on MNIST and CIFAR-10. 500 randomly

selected images are used as source to generate 4500 adversarial

examples with 9 targets for each image on MNIST or CIFAR-10. We

find that the attack success rates of C&W L2 attack and ADMM four

attacks for different temperature T are all 100%. Since distillation

at temperature T causes the value of logits to be approximately T
times larger while the relative values of logits remain unchanged,

C&W attack and ADMM attack which work on the relative values

of logits do not fail.

We further test ADMM attack against adversarial training on

MNIST. C&W L2 attack and ADMM L2 attack are utilized to sep-

arately generate 9000 adversarial examples with 1000 randomly

selected images from the training set as sources. Then we add the

adversarial examples with correct labels into the training dataset

and retrain the network with the enlarged training dataset.With the

retained network, we perform ADMM attack on the adversarially

trained networks (one with C&W adversarial examples, and one

with ADMM adversarial examples), as shown in Fig. 2. ADMM L2
attack can break all three networks (one unprotected, one retained

with C&W adversarial examples, and one retained with ADMM

adversarial examples) with 100% success rate. L2 distortions on

the latter two networks are higher than that on the first network,

showing some defense effect of adversarial training. We also note

that L2 distortion on the third network is higher than the second

L
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Figure 2: L2 distortion of adversarial training for three cases
on MNIST

network, which demonstrates higher defense efficiency of perform-

ing adversarial training with ADMM adversarial examples (partly

because ADMM attack is stronger).

5.7 Attack Transferability
Here we test the transferability of ADMM adversarial attack. For

each value of confidence parameter κ, we use ADMM L2 attack and
C&W L2 attack to generate 9000 adversarial examples on MNIST,

respectively. Then these examples are applied to attack the de-

fensively distilled network with temperature T = 100. The ASR

is reported in Fig. 3. As demonstrated in Fig. 3, when κ is small,

ADMM L2 attack can hardly achieve success on the defensively

distilled network, which means the generated adversarial exam-

ples are not strong enough to break the defended network. Low

transferability of the generated adversarial examples is observed

when κ is low. As κ increases, the ASRs of the three cases increase,

demonstrating increasing transferability. When κ = 50, the ASRs

of three cases can achieve the maximum value. The ASR of average

case is nearly 98%, meaning most of the generated adversarial ex-

amples on the undefended network can also break the defensively

distilled network with T = 100. Also note that when κ > 50, the

ASRs of average case and worst case decrease as κ increases. The

reason is that it’s quite difficult to generate adversarial examples

even for the undefended network when κ is very large. Thus an

decrease on the ASR is observed for average case and worst case,
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Figure 3: transferiablity evaluation of C&W and ADMM L2
attacks on MNIST

and the advantages of strong transferable adversarial examples are

mitigated by the difficulty to generate such strong attacks. We also

note that when κ > 40, the ASRs of ADMM L2 attack for average

case and worst case are higher than the ASRs of C&W L2 attack,
demonstrating higher transferability of the ADMM attack.

6 CONCLUSION
In this paper, we propose an ADMM-based general framework

for adversarial attacks. Under the ADMM framework, L0, L1, L2
and L∞ attacks are proposed and implemented. We compare the

ADMM attacks with state-of-the-art adversarial attacks, showing

ADMM attacks are so far the strongest. The ADMM attack is also

applied to break two defense methods, the defensive distillation and

adversarial training. Experimental results show the effectiveness of

the proposed ADMM attacks with strong transferability.
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