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ABSTRACT
As one of most fascinating machine learning techniques, deep neu-
ral network (DNN) has demonstrated excellent performance in
various intelligent tasks such as image classification. DNN achieves
such performance, to a large extent, by performing expensive train-
ings over huge volumes of training data. To reduce the data storage
and transfer overhead in smart resource-limited Internet-of-Thing
(IoT) systems, effective data compression is a “must-have" feature
before transferring real-time produced dataset for training or clas-
sification. While there have been many well-known image com-
pression approaches (such as JPEG), we for the first time find that
a human-visual based impage compression approach such as JPEG
compression is not an optimized solution for DNN systems, es-
pecially with high compression ratios. To this end, we develop
an image compression framework tailored for DNN applications,
named “DeepN-JPEG", to embrace the nature of deep cascaded
information process mechanism of DNN architecture. Extensive
experiments, based on “ImageNet" dataset with various state-of-
the-art DNNs, show that “DeepN-JPEG" can achieve ∼ 3.5× higher
compression rate over the popular JPEG solution while maintaining
the same accuracy level for image recognition, demonstrating its
great potential of storage and power efficiency in DNN-based smart
IoT system design.

1 INTRODUCTION
Pervasive mobile devices, sensors and Internet of Things (IoT) are
nowadays producing ever-increasing amounts of data. The recent
resurgence in neural networks—the deep-learning revolution, fur-
ther opens the door for intelligent data interpretation, turning the
data and information into actions that create new capabilities, richer
experiences and unprecedented economic opportunities. For exam-
ple, deep neural network (DNN) has become the de facto technique
that is making breakthroughs in a myriad of real-world applica-
tions ranging from image processing, speech recognition, object
detection, game playing and driver-less cars [1–6].

The marriage of big data and deep learning leads to the great
success of artificial intelligence, but it also raises new challenges in
data communication, storage and computation [7] incurred by the
growing amount of distributed data and the increasing DNN model
size. For resource-constrained IoT applications, while recent re-
searches have been conducted [8, 9] to handle the computation and
memory-intensive DNN workloads in an energy efficient manner,
there lack efficient solutions to reduce the power-hungry data offload-
ing and storage on terminal devices like edge sensors, especially in face
of the stringent constraints on communication bandwidth, energy and

hardware resources. Recent studies show that the latencies to upload
a JPEG-compressed input image (i.e. 152KB) for a single inference
of a popular CNN–“AlexNet” via stable wireless connections with
3G (870ms), LTE (180ms) and Wi-Fi (95ms), can exceed that of DNN
computation (6∼82ms) by a mobile or cloud-GPU [10]. Moreover,
the communication energy is comparable with the associated DNN
computation energy.

Data compression is an indispensable technique that can greatly
reduce the data volume needed to be stored and transferred, thus
to substantially alleviate the data offloading and local storage cost
in terminal devices. As DNNs are contingent upon tons of real-
time produced data, it is crucial to compress the overwhelming
data effectively. Existing image compression frameworks (such as
JPEG) can compress data aggressively, but they are often optimized
for the Human-Visual System (HVS) or human’s perceived image
quality, which can lead to unacceptable DNN accuracy degradation
at higher compression ratios (CR) and thus significantly harm the
quality of intelligent services. As shown later, testing a well-trained
AlexNet using CR =∼ 5× compressed JPEG images (w.r.t. CR = 1×
high quality images ), can lead to ∼ 9% image recognition accuracy
reduction for the large scale dataset— ImageNet, almost offsetting
the improvement brought by more complex DNN topology, i.e.
from AlexNet to GoogLeNet (8 layers, 724M MACs v.s. 22 layers,
1.43G MACs) [11, 12]. This prompts the need of developing an
DNN-favorable deep compression framework.

In this work, we for the first time develop a high efficient image
compression framework specifically target on DNN, named DeepN-
JPEG. Unlike existing compressions that are developed by taking
the human perceived distortions as the top priority, DeepN-JPEG
preserves important features crucial for DNN classification with
guaranteed accuracy and compression rate, thus to drastically lower
the cost incurred by data transmission and storage in resource-
limited edge devices. Our major contributions are:

(1) We propose a semi-analytical model to capture the image
processing mechanism differences between human visual
system (HVS) and deep neural network at frequency domain;

(2) We develop an DNN-favorable feature refinement method-
ology by leveraging the statistical frequency component
analysis of various image classes;

(3) We propose piece-wise linear mapping function to link sta-
tistical information of refined features to individual quanti-
zation values in the quantization table, thus to optimize the
compression rate with minimized accuracy drop.

Experimental results show that DeepN-JPEG can achieve much
higher compression efficiency (i.e.∼ 3.5×) than that of JPEG so-
lution while maintaining the same accuracy level with the same
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hardware cost, demonstrating the great potentials for its applica-
tions in low-cost and ultra-low power terminal devices, i.e. edge
sensors.

2 BACKGROUND AND MOTIVATION
2.1 Basics of Deep Neural Networks
DNN introduces multiple layers with complex structures to model
a high-level abstraction of the data [13], and exhibits high effec-
tiveness in finding hierarchical patterns in high-dimensional data
by leveraging the deep cascaded layer structure [11, 12, 14, 15].
Specifically, the convolutional layer extracts sufficient feature maps
from the inputs by applying kernel-based convolutions, the pooling
layer performs a downsampling operation (through max or mean
pooling) along the spatial dimensions for a volume reduction, and
the fully-connected layer further computes the class score based
on the weighted results and non-linear activation functions. Soft-
max regression (or multinomial logistic regression) [16] is usually
adopted in the last layer of most DNNs for a final decision.

To perform realistic image recognition, theDNNhyper-parameters
are trained extensively through an overwhelming amount of input
data. For instance, the large-scale dataset–ImageNet [17], which
consists of 1.3 Million high resolution image samples (∼ 140 Giga-
byte) in 1K categories, is dedicated to training state-of-the-art DNN
models for image recognition task.

2.2 HVS-based JPEG Compression
It is widely agreed that massive images and videos, as the ma-
jor context to be understood by deep neural networks, dominate
the wireless bandwidth and storage ranging from edge devices to
servers. Hence, in this work, we focus on the image compression.

JPEG [18] is one of the most popular lossy compression standards
for digital images. It also forms the foundation of most commonly
used video compression formats like Motion JPEG (MPEG) and
H.264 etc [19]. As shown in Fig. 1, for each color component, i.e.
the RGB channels, the input image is first divided into 8 × 8 non-
overlapping pixel blocks, then 2D Fourier Discrete Cosine (DCT)
Transform is applied at each 8 × 8 block to generate 64 DCT coef-
ficients ci, j , i ∈ 0, ..., 7, j ∈ 0, ..., 7, of which c0,0 is direct current
(DC) coefficient, and c0,1, ..., c7,7 are 63 alternating current (AC)
coefficients. Each 64 DCT coefficients are quantized and rounded
to the nearest integers as c ′i, j = round[ ci, jqi, j ], here qi, j is the indi-
vidual parameter of the 64-element quantization table provided
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Figure 2: (a) Accuracy v.s. JPEG CRs of “AlexNet” for CASE 1/2; (b)
CASE 2–Accuracy w.r.t Epoch Number at various CRs.

by JPEG [18]. The table is designed to preserve the low-frequency
components and discard high-frequency details because human visual
system (HVS) is less sensitive to the information loss in high frequency
bands [20]. As a many-to-one mapping, such quantization is funda-
mentally lossy (i.e. ci, j , c ′i, j × qi, j at the decompress stage), and
can generate more shared quantized coefficients (i.e. zeros) for a bet-
ter compression. After quantization, all the quantized coefficients
are ordered into the “zig-zag” sequence following the frequency
increasing. Finally, the differential coded DC and run-length coded
AC coefficients will be further compressed by lossless Huffman or
Arithmetic Coding. Increasing (reducing) the compression ratio
(CR) can be usually realized by scaling down (up) the quantization
table through adjusting the quantization factor (QF). A larger QF
indicates better image quality but a lower CR. A reserved procedure
of aforementioned steps can decompress an image.

2.3 Inefficient HVS Compression for DNNs
DNN suffers from dramatic accuracy loss if using existing
HVS-based compression techniques to aggressively compress
the input images for more efficient data offloading and stor-
age: To explore how existing compressions can impact the accu-
racy of DNN, we have conducted following two sets of experi-
ments: CASE 1: training DNN model by high quality JPEG images
(QF=100), but testing it with images at various CRs or QFs (i.e.
QF=100, 50, 20); CASE 2: training DNN model by various com-
pressed images (QF=100, 50, 20), but testing it only with high qual-
ity original images (QF=100). In both cases, a representative DNN
example–“AlexNet” [11] with 5 convolutional layers, 3 fully con-
nected layers and 60M weight parameters is trained with the Ima-
geNet dataset for large scale visual recognition.

As Fig. 2 (a) shows, the “top-1" testing accuracies characterized
from both cases degrade significantly as the CR increases from 1
to 5 (or QF from 100 to 20). To achieve the best CR (QF=20, CR=5),
the accuracy of CASE 1 (CASE 2) can be even dropped by ∼ 9%
(∼ 5%) than that of the original one (QF=100, CR=1). Note that the
accuracy improvement of ImageNet from “AlexNet" to “GoogLeNet"
is merely ∼ 9%, despite of the significant increased number of
layers (8 v.s. 22) and multiply-and-accumulates (724M v.s. 1.43G).
We also observe that “CASE 2" can always exhibit smaller accuracy
reduction than “CASE 1" across all CRs ranging from CR=3 to CR=5.
This clearly indicates that training the DNN with more compressed
JPEG images (compared with testing ones) can slightly alleviate the
accuracy dropping, but cannot completely address this issue. As
Fig. 2 (b) shows, the accuracy gap between a higher CR (or low QF,
i.e. QF=20) and the original one (CR=1) for CASE 2 is maximized at
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Figure 3: Feature degradation will impact the classification.

the last testing epoch. Apparently, existing compressions like JPEG,
which are centered around human visual system, are not optimized
solutions for DNNs, especially at a higher compression ratio.

3 OUR APPROACH
Developing efficient compression frameworks has been widely stud-
ied in applications like image and video processing, however, all
these researches are taking the human perceived distortions as
the top priority, rather than the unique properties of deep neural
networks, such as accuracy, deep cascaded data processing, etc.
In this section, we first discover the different views of human vi-
sual system and deep neural network in image processing, and
then propose the DNN-favorable JPEG-based image compression
framework–“DeepN-JPEG".

3.1 Modeling the difference of HVS and DNN
We have initialized our studies on an interesting problem: What
are the major differences of image processing between human vision
system (HVS) and deep neural network? This should help on explain-
ing the aforementioned accuracy reduction issue, thus to guide
the development of DNN-favorable compression framework. Our
observation is that DNNs can response to any important frequency
component precisely, but human visual system focuses more on the
low frequency information than high frequency ones, indicating fewer
features to be learned by DNNs after the HVS-inspired compression.
Assume xk is a single pixel of a raw image X, and xk can be repre-
sented by 8 × 8 DCT in JPEG compression:

xk =
i=7∑
i=0

n=7∑
j=0

c(k,i, j) · b(i, j) (1)

where c(k,i, j) and b(i, j) are the DCT coefficient and corresponding
basis function at 64 different frequencies, respectively. Because the
human visual system is less sensitive to high frequency components,
a higher CR can be achieved in JPEG compression by intentionally
discarding the high frequency parts, i.e. zeroing out the associated
DCT coefficient c(k,i, j) through scaled quantization. On the con-
trary, DNNs examine the importance of the frequency information
in a quite different way. The gradient of the DNN function F with
respect to a basis function b(i, j) can be calculated as:

∂F

∂b(i, j)
=
∂F

∂xk
× ∂xk
∂bi, j

=
∂F

∂xk
× c(k,i, j) (2)

Eq. 2 implies that the contribution of a frequency component (bi, j )
of a single pixel xk to the DNN learning will be mainly determined
by its associated DCT coefficient (c(k,i, j)) and the importance of

the pixel ( ∂F
∂xk

). Here ∂F
∂xk

is obtained after the DNN training, while
c(k,i, j) will be distorted by the image compression (i.e. quantization)
before training. If c(k,i, j) = 0, the frequency feature (bi, j ), which
may carry important details for DNN featuremap extraction, cannot
be learned by DNN for weights updating, causing a lower accuracy.

It is often the case in a highly compressed JPEG image, given that
c(k,i, j)s of high frequency parts (usually small in nature images) are
quantized to zero to ensure a better compression rate. As a result,
DNNs can easily misclassify aggressively compressed images if
their original versions contain important high frequency features.
In CASE 1 (see Fig. 2(a)), the DNN model trained with original
images learns comprehensive features, especially high frequency
ones that are important in some images, however, such features
are actually lost in some more compressed testing images, causing
considerable misclassification rate. Fig. 3 demonstrates such an
example–the “junco" is mis-predicted as “robin" after removing the
top six high frequency components, despite that the differences are
almost indistinguishable by human eyes. In CASE 2 (see Fig. 2(b)),
the model is trained to make decisions solely based on the limited
number of features learned from more compressed training images,
and the additional features in high quality testing images cannot
be detected by DNN for accuracy improvement.

3.2 DNN-Oriented DeepN-JPEG Framework
To develop the “DeepN-JEPG" framework, it is essential to minimize
the distortion of frequency features that are most important to DNN,
thus to maintain the accuracy as much as possible. As quantization
is the principle factor to cause important feature loss, i.e. removing
less significant high frequency parts by using a larger quantization
step in JPEG, the key step of “DeepN-JEPG" is to re-design such
HVS-inspired quantization table to be DNN favorable, i.e. achiev-
ing a better compression rate than JPEG without losing needed
features. Although the quantization table redesign has been proved
to be a feasible solution in various applications, such as feature
detection [21], visual search [22], it is an intractable optimization
problem for “DeepN-JPEG" because of the complexity of parameter
searching [23], and the difficulty of a quantitative measurement
suitable to DNNs. For example, it is non-trivial to characterize the
implicit relationship between image feature (or quantization) er-
rors and DNN accuracy loss. Moreover, the characterized results
could vary according to the DNN structure. Therefore, it is very
challenging to develop a generalized DNN-favorable compression
framework.

Our analysis in section 3.1 indicates that the contribution of
a frequency band to DNN learning is strongly related with the
magnitude of the band coefficient. Inspired by this key observation,
our “DeepN-JEPG" is developed upon a heuristic design flow (see
Fig. 4): 1) Sample representative raw images from each class and
further characterize the importance of each frequency component
through frequency analysis on sampled sub dataset; 2) Link the
statistical information of each feature with the quantization step of
quantization table through proposed “Piece-wise Linear Mapping”.

3.2.1 Image Sampling and Frequency Component Anal-
ysis. In “DeepN-JPEG" framework, our first step is to sample all
classes within the labeled dataset, for more comprehensive feature
analysis. To extract the representative features from the whole
dataset and rank the importance of those features to DNN, we
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Figure 4: An overview of heuristic design flow of “DeepN-JPEG" framework.

implied the feature complexity of the image–smooth image with
simple features will be compressed at small size while large size
indicates the image consists of more complex features. characterize
the un-quantized DCT coefficient distribution at each frequency
band, since the distribution represents the energy of a frequency
component [24]. Previous studies [24] have proven that the un-
quantized coefficient can be approximated as normal (or Laplace)
distribution with zero mean but different standard deviations (δi, j ).
A larger δi, j indicates more energy in the band (i, j), hence more
contributions to the DNN feature learning. As shown in algorithm 1,
each sampled image will be first partitioned intoNblock 8×8 blocks,
followed by a block-wise DCT. After that, the DCT coefficient dis-
tribution at each frequency band will be characterized by sorting all
coefficients within the same frequency band across all image blocks
collected from different classes of the image dataset. The statistical
information, such as the standard deviation δi, j of each coefficient,
will be calculated based on each individual histogram. Note that
such a frequency refinement procedure can precisely tell out the
most significant features to DNN, and is different from the simple
assumption that low frequency part is always more important than
the high ones can easily lead to the DNN accuracy reduction.

3.2.2 Quantization Table Design. Once the importance of
frequency band to DNN is identified by our calibrated DCT coeffi-
cient standard deviation, our next question becomes how to link
those information to the quantization table design to achieve a
higher compression rate with minimized accuracy reduction. The
basic idea is to introduce less (more) quantization errors at the crit-
ical (less critical) band by leveraging the intrinsic error resilience
property of the DNN. To introduce nonuniform quantization er-
rors at different frequency bands, we develop a piece-wise linear
mapping function (PLM) to derive the quantization step of each
frequency band from the associated standard deviation:

Qi, j =


a − k1 ∗ δi, j δi, j ≤ T1
b − k2 ∗ δi, j T1 < δi, j ≤ T2
c − k3 ∗ δi, j δi, j > T2

, s .t . Qi, j ≥ Qmin (3)

where Qi, j is the quantization step at the frequency band (i, j).
Qmin is the lowest quantization step. a, b, c , k1, k2, k3 are fitting
parameters.T1 andT2 are thresholds to categorize the 64 frequency
bands according to the δ

′
i, j , i.e. ascending order of the magnitude of

δi, j . As right part of Fig. 4 shows, following the similar frequency
segmentation in [25], the 64 frequency components are divided
into three bands: Low Frequency (LF)–1-6 frequency components
(largest δ

′
i, j ),Middle Frequency (MF)–7-28 andHigh Frequency

(HF)–29-64 (smallest δ
′
i, j ). Hence, we adoptT1 = δ

′
1,8 andT2 = δ

′
1,4

in our design. Three different slopes–k1, k2, k3, are assigned to HF
band, MF band and LF band, respectively.

4 DESIGN OPTIMIZATION
In this section, we explore the parameter optimization for our pro-
posed Piece-wise Linear Mapping based quantization table design.
In order to set optimized parameters of Eq. 3, i.e. k1, k2 and k3, we
first study the sensitivity of quantization steps to DNN accuracy
across the LF, MF and HF bands. We define our proposed band allo-
cation in “DeepN-JPEG" as the “magnitude based”, i.e. to segment
the frequency band into three types (LF/MF/HF) according to the
magnitude of standard deviation of DCT coefficient. For comparison
purpose, we also implement the coarse-grained band assignment
method based on its position within a default JPEG quantization
table, namely “position based". We conduct the simulations by only
varying the quantization steps of interested frequency bands, while

Algorithm 1: Frequency component analysis Algorithm
1 C: # of Classes;
2 N: # of images in each class;
3 k: Interval for sampling images;
4 Spath: Path of Sampled Images;
5 Nsamp: #number of sampled images;
6 f imдi : Image in frequency domain;
7 f ck : Frequency components;
8 Nblock: # of 8*8 blocks after block-wise DCT;
9 δk : standard deviation of kth frequency components;

10 foreach class classi in [class1 .. classC ] do
11 m = 0; // count the number of images in certain class
12 foreach image imдj in [imд1 .. imдN ] do
13 m++;
14 if m % k = 0 then
15 Spath record (Path of imдj )

16 foreach image Spath in [imд1 .. imдNsamp ] do
17 f imдi = 8*8 block-wise DCT (imдi )
18 foreach Blocki, j in [1 .. Nblock] do
19 Blocki, j = f imдi [j*8-8:j*8][j*8-8:j*8]// ith sampled image jth 8*8

block
20 foreach f ck in [1 .. 64] do
21 f ck store Blocki, j [k ]// ith sampled image jth 8*8 block kth

frequency component

// Statistical Analysis
22 foreach f ck in [1 .. 64] do
23 calculate standard deviation δk
24 return δk // standard deviation of each frequency components

4
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Figure 5: Parameter optimization for different frequency bands.

all the others are assigned with minimized quantization steps, i.e.
Qi, j = 1 without introducing any quantization errors.

Frequency Band Segmentation. As Fig. 5 shows, “magnitude
based" method can always achieve better accuracy than that of
“position based" in both MF and HF bands as the quantization step
increases. Moreover, our solution can provide a larger quantization
step in both MF and HF bands without accuracy reduction, i.e. 40 v.s.
60 in HF band, which can translate into a higher compression rate
than that of JPEG. Besides, we also observe that DNN accuracy starts
to drop if Qi, j > 5 at the LF band, which indicates that statistically
the largest DCT coefficients are most sensitive to quantization
errors, thus we set Qmin = 5 as the lower bound of quantization
value to secure the accuracy (see Fig. 5 (a)). Similarly, based on
the critical points of Fig 5 (b) and (c), we can further obtain the
quantization steps at the point T1 and T2, thus to determine the
parameters such as k1, k2, a and b.

Tuning k3 in LF Band. Unlike the parameters in MF and HF
bands, the optimization of k3 in LF band is non-trivial because of
its significant impact to accuracy and compression rate. Since k3
cannot be directly decided according to the lower bound Qmin
and c , we investigate the correlation between compress rate and
accuracy based on a variety of k3. As shown in Fig. 6, a smaller k3
can offer a better compression rate by slightly sacrificing the DNN
accuracy. Based on our observation, we choose k3 = 3 to maximize
the compression rate while maintaining the original accuracy.
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5 EVALUATION
Our experiments are conducted on the deep learning open source
framework Torch [26]. The “DeepN-JPEG" framework is imple-
mented by heavily modifying the open source JPEG framework [27].
The large-scale ImageNet [17] dataset is adopted to measure the im-
provement of compression rate and classification accuracy. Specifi-
cally, all images are maintained as their original scales in our eval-
uation without any speed-up trick such as resize or pre-processing.
The optimized parameters of “DeepN-JPEG" framework dedicated
to ImageNet are as follows: a = 255, b = 80, c = 240, T1 =
20, T2 = 60, k1 = 9.75, k2 = 1, k3 = 3. Four state-of-the-art DNN
models are evaluated in our experiment–AlexNet [11], VGG [15],
GoogLeNet [12] and ResNet [14].

5.1 Compression Rate and Accuracy
We first evaluate the compression rate and classification accuracy of
our proposed DeepN-JPEG framework. Three baseline designs are
implemented for comparison purpose: the “original" dataset com-
pressed by JPEG (QF=100, CR=1), “RM-HF” compressed dataset and
“SAME-Q” compressed dataset. Specifically, “RM-HF” is extended
from JPEG by removing the top-N high frequency components from
the quantization table to further improve the compression rate, and
“SAME-Q” denotes a more aggressive compression method with the
same quantization step Q for all frequency components.

Fig. 7 compares the compression rate and accuracy based on the
“ImageNet” dataset “AlexNet” DNN model for all selected candi-
dates. Compared with the “original", “RM-HF” slightly increases the
compression rate (∼ 1.1 × − ∼ 1.3×) by removing more highest fre-
quency components (top-3–top-9), while “SAME-Q” achieves better
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compression rates (∼ 1.5 × − ∼ 2×). However, both schemes suffer
from increased accuracy reduction (w.r.t. “original”) as long as the
compression rate becomes higher. On the contrary, our “DeepN-
JPEG" delivers the best compression rate (i.e. ∼ 3.5×) while main-
taining the similar high accuracy as that of original dataset, indi-
cating a promising solution to reduce the cost of data traffic and
storage of edge devices for deep learning tasks.

Generality of DeepN-JPEG. We also extend our evaluations
across several state-of-the-art DNNs to study how the “DeepN-
JPEG" framework responses to different DNN architectures, in-
cluding GoogLeNet, VGG-16, ResNet-34 and ResNet-50. As shown
in Fig. 8, our proposed “DeepN-JPEG" can always maintain the
original accuracies (w.r.t. “Original”) for all selected DNN models.
Although JPEG can easily achieve a similar compression rate as
that of “DeepN-JPEG" by largely reducing the JPEG QF value, e.g.
QF ⩽ 50, such an aggressive “data lossy" compression results in sig-
nificant side effect on the classification performance of all selected
DNN models. In contrast, “DeepN-JPEG" can preserve both high
compression rate and accuracy for all DNNs, thus a generalized
solution.

5.2 Power Consumption
In resource-constraint terminal devices, the data offloading incurred
power consumption can even outperform that of DNN computation
in deep learning [10]. Date compression can reduce the associated
cost. Following the same measurement in [10], Fig. 9 shows the re-
sults of power reduction breakdown. Our “DeepN-JPEG" based data
processing consumes only 30% energy without accuracy reduction
when compared with that of original dataset. Compared with “RM-
HF3” (remove the top-3 high frequency components in quantization
table) and “SAME-Q4” (the same quantization value–4 in quantiza-
tion table), “DeepN-JPEG" can still achieve ∼ 2× and ∼ 3× power
reduction respectively, due to more efficient data compression.

6 CONCLUSION
The ever-increasing data transfer and storage overhead significantly
challenges the energy efficiency and performance of large-scale
DNNs. In this paper, we propose a DNN oriented image compression
framework, namely “DeepN-JPEG", to ease the storage and data
communication overhead. Instead of the Human Vision System
inspired JPEG compression, our solution effectively reduces the
quantization error based on the frequency component analysis and
rectified quantization table, and further increases the compress rate
without any accuracy degradation. Our experimental results show

that “DeepN-JPEG” achieves∼ 3.5× compression rate improvement,
and consumes only 30% power of the conventional JPEG without
classification accuracy degradation, thus a promising solution for
data storage and communication for deep learning.
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